Spaces:
Running
Running
File size: 28,481 Bytes
d04ae31 f12885d d04ae31 deaa85b d04ae31 ef585a9 b529c59 d04ae31 b529c59 d04ae31 b529c59 d04ae31 c7bb414 d04ae31 b529c59 c7bb414 6698aec c7bb414 6698aec c7bb414 6698aec c7bb414 6698aec c7bb414 6698aec c7bb414 d04ae31 ef585a9 d04ae31 ef585a9 d04ae31 b529c59 d04ae31 c9c4133 d04ae31 b529c59 d04ae31 b529c59 d04ae31 b529c59 d04ae31 b529c59 d04ae31 beb50d0 b529c59 d04ae31 beb50d0 d04ae31 beb50d0 d04ae31 b529c59 beb50d0 d04ae31 b529c59 d04ae31 beb50d0 b529c59 beb50d0 b529c59 beb50d0 b529c59 beb50d0 b529c59 d04ae31 beb50d0 d04ae31 c9c4133 d04ae31 beb50d0 3f46732 d04ae31 c7bb414 d04ae31 c7bb414 b529c59 d04ae31 f12885d c7bb414 b529c59 d04ae31 b529c59 beb50d0 b529c59 beb50d0 b529c59 beb50d0 b529c59 f12885d ef585a9 b529c59 ef585a9 25c1380 ef585a9 3f46732 f12885d ef585a9 b529c59 f12885d 3f46732 b529c59 beb50d0 670c941 d04ae31 b529c59 beb50d0 c7bb414 b529c59 beb50d0 b529c59 beb50d0 b529c59 beb50d0 b529c59 c7bb414 6698aec beb50d0 b529c59 d04ae31 ef585a9 d04ae31 beb50d0 d04ae31 b529c59 d04ae31 9631ee0 d04ae31 beb50d0 d04ae31 b529c59 d04ae31 b529c59 d04ae31 beb50d0 d04ae31 beb50d0 d04ae31 b529c59 beb50d0 b529c59 d04ae31 beb50d0 b529c59 beb50d0 d04ae31 9631ee0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 |
from operator import indexOf
import os
import gradio as gr
import asyncio
from dotenv import load_dotenv
from pathlib import Path
from time import sleep
from glob import glob
import copy
import base64
import json
from PIL import Image
from io import BytesIO
import math
from openai.types import Reasoning
import requests
from urllib.parse import quote
from multiprocessing import context
# from agents.tool import WebSearchTool
from typing_extensions import TypedDict, Any
from agents import Agent, FunctionTool, ImageGenerationTool, RunContextWrapper, Runner, WebSearchTool, function_tool, CodeInterpreterTool, ModelSettings
from openai import OpenAI
from markdown_pdf import MarkdownPdf
from markdown_pdf import Section
from docx import Document
import brave
import geo_distance
load_dotenv(override=True)
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
users = os.getenv('LOGNAME')
unames = users.split(',')
pwds = os.getenv('PASSWORD')
pwd_list = pwds.split(',')
# DEEPSEEK_KEY=os.getenv('DEEPSEEK_KEY')
# GROQ_KEY=os.getenv('GROQ_KEY')
BRAVE_KEY=os.getenv('BRAVE_KEY')
# BRAVE_SEARCH_KEY=os.getenv('BRAVE_SEARCH_KEY')
LOCATIONID_KEY=os.getenv('LOCATIONID_KEY')
GOOGLE_KEY=os.getenv('GOOGLE_KEY')
# site = os.getenv('SITE')
# if site == 'local':
# dp = Path('./data')
# dp.mkdir(exist_ok=True)
# dataDir = './data/'
# else:
# dp = Path('/data')
# dp.mkdir(exist_ok=True)
# dataDir = '/data/'
# mimes = {'pdf': 'application/pdf', 'txt': 'text/plain',
# 'docx': 'application/vnd.openxmlformats-officedocument.wordprocessingml.document'}
@function_tool
async def google_route(loc1: str, loc2: str, prefer_public: bool, scenic_route: bool):
'''Uses Google Maps API to obtain a route plan overview, and distance in miles and duration
for a travel leg between two addresses.
Args:
loc1: text of the starting point address
loc2: text of the destination point address
prefer_public: boolean should be false unless user desired public transportation
scenic_route: boolean should be false unless user desired scenic or slow route
Returns:
a tuple of (distance, duration, overview of the route plan)
'''
# fields = 'routes.legs.distanceMeters' + \
# ',routes.legs.steps.distanceMeters' + \
# ',routes.legs.steps.navigationInstruction.instructions'
headers = {
'content-type': 'application/json',
'X-Goog-Api-Key': GOOGLE_KEY,
'X-Goog-FieldMask': '*',
}
distance = 'unknown'
duration = 'unknown'
overview = ''
modes = ['DRIVE', 'TRANSIT']
if prefer_public:
modes.reverse()
for travel_mode in modes:
get_alternates = False
if travel_mode == 'DRIVE' and scenic_route == True:
get_alternates = True
json_data = {
'origin': {
'address': f'{loc1}',
},
'destination': {
'address': f'{loc2}',
},
'travelMode': travel_mode,
# 'routingPreference': 'TRAFFIC_AWARE',
'computeAlternativeRoutes': get_alternates,
'routeModifiers': {
'avoidTolls': False,
'avoidHighways': False,
'avoidFerries': False,
},
'languageCode': 'en-US',
'units': 'IMPERIAL', # 'METRIC',
}
response = requests.post('https://routes.googleapis.com/directions/v2:computeRoutes',
headers=headers, json=json_data)
content = json.loads(response.content)
if routes := content.get('routes'):
route_chosen = 0
if get_alternates and len(routes) > 1:
max_distance = 0
for route_num in range(len(routes)):
if dist_meters := routes[route_num].get('distanceMeters'):
if dist_meters > max_distance:
max_distance = dist_meters
route_chosen = route_num
if legs := routes[route_chosen].get('legs'):
leg = legs[0]
if loc_vals := leg.get('localizedValues'):
distance = loc_vals.get('distance','unknown')
duration = loc_vals.get('duration', 'unknown')
# static_duration = loc_vals.get('staticDuration', 'unknown')
if steps_overview := leg.get('stepsOverview'):
if multi_steps := steps_overview.get('multiModalSegments'):
for seg in multi_steps:
if nav := seg.get('navigationInstruction'):
instructs = nav.get('instructions')
overview += f'\n\n*** {instructs}'
if seg.get('travelMode') == 'TRANSIT':
idx = seg.get('stepStartIndex')
step = leg['steps'][idx]
if td := step.get('transitDetails'):
if tl := td.get('transitLine'):
if tname := tl.get('name'):
overview += f'\n via: {tname}'
elif steps := leg['steps']:
overview = '\n\nDriving Instructions:'
for step in steps:
sdist = '?? mi'
if step_loc_vals := step.get('localizedValues'):
if dterm := step_loc_vals.get('distance'):
sdist = dterm.get('text', '?? mi')
if step_nav := step.get('navigationInstruction'):
if sinstr := step_nav.get('instructions'):
overview += f'\n\n {sinstr}. Go {sdist}'
break
return (distance, duration, overview)
@function_tool
async def make_pdf(text: str, title: str)->str:
'''Creates a pdf document based on input markdown text and title string.
Args:
text: The markdown text to be processed to create the pdf document.
title: A title that will be used as part of a filename in a file path.
Returns:
The title of the PDF that was created.
'''
for file in glob('./document.pdf'):
os.remove(file)
pdf = MarkdownPdf()
pdf.add_section(Section(text))
outpath = os.path.join('./','document.pdf')
pdf.save(outpath)
return title
@function_tool
async def get_news(query: str, window: str)->str:
'''Searches the internet news sources for news related to the query, within
a time window defined by argument window.
Args:
query: The topic about which news is desired.
window: a string indicating the time window over which news occurs, must be either 'day', 'week', 'month' or 'year'.
'''
periods = {"day":"pd","week":"pw","month":"pm","year":"py"}
window = window.casefold()
period = 'pw'
if window in periods.keys():
period = periods[window]
news = brave.get_brave_news(query, BRAVE_KEY, period)
return news
@function_tool
async def search_web(query: str)->str:
'''Searches the internet for information related to the query.
Args:
query: The topics to be searched on.
'''
result = brave.get_brave_search_results(query, BRAVE_KEY)
return result
@function_tool
async def get_distance(addr1: str, addr2: str)->float:
'''Compute the great-circle distance in miles between two addresses or other location specifiers.
Args:
addr1: The first address or location specifier.
addr2: The second address or location specifier.
Returns:
Distance in miles
'''
(lat1, lon1) = geo_distance.get_geo_coords(addr1, LOCATIONID_KEY)
(lat2, lon2) = geo_distance.get_geo_coords(addr2, LOCATIONID_KEY)
distance = geo_distance.great_circle_distance_miles(lat1, lon1, lat2, lon2)
return distance
def extract_text_from_docx(file_path):
doc = Document(file_path)
text = []
for paragraph in doc.paragraphs:
text.append(paragraph.text)
return "\n".join(text)
def md(txt):
# return str(txt).replace('```', ' ').replace(' ', ' ').replace(' ', ' ').replace(' ', ' ').replace('\n','<br>').replace('~~','\~').replace('~','\~')
return str(txt).replace('```', ' ').replace(' ', ' ').replace(' ', ' ').replace(' ', ' ').replace('\n','<br>').replace('~','\~')
# def clean_history(db_path: str):
# connection = sqlite3.connect(db_path)
# cursor = connection.cursor()
# # Query to fetch all table names
# cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
# tables = cursor.fetchall()
# # Drop each table
# for table_name in tables:
# if table_name != 'sqlite_sequence':
# cursor.execute(f"DELETE FROM {table_name[0]};")
# # Commit changes and close the connection
# connection.commit()
# connection.close()
def updatePassword(pwd, user):
password = 'none'
if user in unames:
pwd = pwd.lower().strip()
if pwd == pwd_list[unames.index(user)]:
password = pwd
return [password, "*********",
gr.Button(value='Upload Input File', interactive=True),
gr.Button(value='Upload Image to Analyze', interactive=True)]
else:
return [password, "invalid password",
gr.Button(value='Upload Input File', interactive=False),
gr.Button(value='Upload Image to Analyze', interactive=False)]
else:
return [password, "invalid user",
gr.Button(value='Upload Input File', interactive=False),
gr.Button(value='Upload Image to Analyze', interactive=False)]
def update_user(user_win):
user_win = user_win.lower().strip()
user = 'unknown'
for s in unames:
if user_win == s:
user = s
break
return [user, user]
def credentials_ok(user, pwd):
return user in unames and pwd in pwd_list
def clean_up_files():
for file in glob('./document.*'):
try:
os.remove(file)
except:
pass
for file in glob('./*.png'):
try:
os.remove(file)
except:
pass
def load_image(image, user, output_window, uploaded_image_files):
# status = #'OK, image is ready! Enter prompt and tap submit button'
try:
with open(image, 'rb') as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
fpath = f'{user}_image{len(uploaded_image_files)}.b64'
with open(fpath, 'wt') as fp:
fp.write(base64_image)
output_window += md(f'\nImage {os.path.basename(image)} loaded\n')
uploaded_image_files.append(fpath)
except:
output_window = 'Unable to upload image'
return [uploaded_image_files, output_window]
def upload_image(user, password, output_window):
if not credentials_ok(user, password):
return [gr.Image(visible=False, interactive=True), "Incorrect user name and/or password"]
return [gr.Image(visible=True, interactive=True, value=None), output_window]
def upload_file(user, password, output_window):
if not credentials_ok(user, password):
return [gr.File(visible=False, label='Upload File'), 'Incorrect user and/or password']
return [gr.File(visible=True, label='UploadFile', value=None), output_window]
def load_file(file_uploader, output_window, uploaded_file_paths):
path = file_uploader
fname = os.path.basename(path)
uploaded_file_paths.append(path)
return [uploaded_file_paths, output_window + f'<br>{fname} loaded<br>',
gr.File(visible=False, label='Upload File', type='filepath', value=None) ]
def create_openai_container(name):
url = 'https://api.openai.com/v1/containers'
headers= {"Authorization": "Bearer " + OPENAI_API_KEY, "Content-Type": "application/json",}
json_data = {"name": name}
response = requests.post(
url,
headers=headers,
json=json_data
)
return json.loads(response.content)["id"]
def get_openai_file(file_id, container_id):
url = f'https://api.openai.com/v1/containers/{container_id}/files/{file_id}/content'
headers= {"Authorization": "Bearer " + OPENAI_API_KEY}
response = requests.get(
url,
headers=headers
)
return response
def list_openai_container_files(container_id):
url = f'https://api.openai.com/v1/containers/{container_id}/files'
headers= {"Authorization": "Bearer " + OPENAI_API_KEY}
response = requests.get(
url,
headers=headers
)
return response
async def chat(prompt_window, user_window, password, history, output_window,
uploaded_image_files, uploaded_file_paths, prior_inputs):
file_download = gr.DownloadButton(label='Download File', visible=False, value=None)
image_window = gr.Image(visible=False, value=None)
# return [md('Hello, ~this is the text~ for you\nHello ~~This is text2~~ for you\n22.3 = ~22'),
# prompt_window, uploaded_image_files,
# image_window, file_download, history, uploaded_file_paths, prior_inputs]
if not credentials_ok(user_window, password):
return ['Invalid Credentials', prompt_window, uploaded_image_files,
image_window, file_download, history, uploaded_file_paths, prior_inputs]
instructions = '''
You are a helpful assistant.
You can call tools to compute straight-line distances and to search the web for
either information or news. When you search for news you need to specify a period
of either 'day', 'week', 'month' or 'year'. You also have a tool to create PDF
documents and it requires markdown text as input. If a distance is requested use
straight-line distance by default, and when possible use street addresses for locations.
If a travel leg between two points is involved, use the google_route tool to obtain and
provide the distance, duration and route plan overview for the leg.
'''
# await google_route('307 Pauly Drive, Englewood, Ohio', '133 Union Ridge Drive, Union, Ohio')
# await google_route('307 Pauly Drive, Englewood, Ohio', 'Times Square, New York, NY')
# await google_route('Dayton International Airport', 'Hartsfeld Airport, Atlanta, GA')
# await google_route('Phi Phi Islands, Thailand', 'Railay Beach, Thailand')
code_container = create_openai_container('my_container')
agent = Agent(name="Assistant",
instructions=instructions,
model_settings=ModelSettings(reasoning=Reasoning(effort='low', summary='detailed')),
tools=[get_distance, WebSearchTool(), get_news, make_pdf, google_route, # search_web
CodeInterpreterTool(tool_config={"type": "code_interpreter","container": code_container}), # make_pdf,
ImageGenerationTool(tool_config={"type": "image_generation", "quality": "low"},)],)
response = output_window
if not response:
response = ''
prompt = prompt_window
# inputs = history.copy()
inputs = prior_inputs
file_input = ''
if len(uploaded_file_paths) > 0:
for uploaded_file_path in uploaded_file_paths:
ext = uploaded_file_path.casefold().split('.')[-1]
if ext == 'pdf':
client = OpenAI(api_key = OPENAI_API_KEY)
file = client.files.create(file=open(f'{uploaded_file_path}','rb'),
purpose='user_data',
expires_after={"seconds": 3600, "anchor": "created_at"})
file_input=(
{"role": "user",
"content": [
{
"type": "input_file",
"file_id": file.id,
}
]
}
)
inputs.append(file_input)
if ext in ['docx', 'txt', 'py']:
if ext == 'docx':
extracted_text = extract_text_from_docx(uploaded_file_path)
else:
with open(uploaded_file_path, 'rt') as fp:
extracted_text = fp.read()
file_input=(
{"role": "user",
"content": [
{
"type": "input_text",
"text": f"{extracted_text}",
}
]
}
)
inputs.append(file_input)
uploaded_file_paths = []
image_input = ''
if len(uploaded_image_files) > 0:
for file in uploaded_image_files:
with open(file, 'rt') as fp:
b64data = fp.read()
os.remove(file)
image_input = (
{
"role": "user",
"content": [
{
"type": "input_image",
"image_url": f'data:image/jpeg;base64, {b64data}',
}
]
}
)
inputs.append(image_input)
uploaded_image_files = []
history.append({"role":"user", "content":prompt})
inputs.append({"role":"user", "content":prompt})
exception_msg = ''
result = None
reasoning = ''
pdf_id = None
try:
result = await Runner.run(agent, max_turns=20,
input=inputs)
for item in result.new_items:
if (
item.type == "tool_call_item"
and item.raw_item.type == "image_generation_call"
and (img_result := item.raw_item.result)
):
image_out_path = f'{user_window}_out.png'
with open(image_out_path,'wb') as fp:
fp.write(base64.b64decode(img_result))
image_window = gr.Image(visible=True, value=image_out_path)
if item.type == 'tool_call_item':
raw = item.raw_item
if raw.type == 'function_call' and raw.status == 'completed':
if raw.name == 'make_pdf':
pdf_id = raw.call_id
if item.type == 'tool_call_output_item' and pdf_id:
raw_id = item.raw_item['call_id']
if raw_id == pdf_id:
# raw_data = item.raw_item['output']
# bin_out = base64.b64decode(raw_data)
# with open('./document.pdf', 'w', encoding='utf-8') as fp:
# fp.write(raw_data)
file_download = gr.DownloadButton(label=f'Download PDF Doc',
visible=True, value='./document.pdf')
if item.type == "reasoning_item":
for o in item.raw_item.summary:
if o.type == "summary_text":
reasoning += ('\n' + o.text + '\n')
# for raw in result.raw_responses:
# for item in raw.output:
# if item.type == 'reasoning' and item.summary:
# for o in item.summary:
# reasoning += ('\nm1: ' + o.text + '\n')
out_text = "\n".join(line for line in result.final_output.splitlines() if
not ('download' in line.casefold() and 'mnt' in line.casefold()))
if out_text == '':
out_text = 'Download using button below.'
reply = md(out_text)
response += "\n\n***YOU***: " + prompt + "\n\n***GPT***: " + reply.replace('```','\n\n```\n\n')
if reasoning != '':
response += '\n\n**Reasoning:**\n\n' + reasoning + '\n'
history.append({"role":"assistant", "content":result.final_output})
except Exception as e:
exception_msg = f'Error: {e.message}'
response += "\n\n***YOU***: " + prompt + "\n\n***GPT***: " + exception_msg
if result:
new_inputs = result.to_input_list()
usage = result.context_wrapper.usage
response += f"\nTotal tokens: = {usage.total_tokens}"
loc = result.final_output.find('/mnt/data/')
if loc > -1:
ts = result.final_output[loc+10:]
loc2 = ts.find(')')
if loc2 > -1:
fname = ts[:loc2]
container_list = list_openai_container_files(code_container)
file_list_json = json.loads(container_list.content)
latest_file_time = 0
download_file_id = None
download_ext = ''
for item in file_list_json['data']:
if fname in item["path"]:
file_time = item["created_at"]
if file_time > latest_file_time:
latest_file_time = file_time
download_file_id = item["id"]
download_ext = fname.split('.')[-1].casefold()
if download_file_id:
fdata = get_openai_file(download_file_id, code_container).content
with open(f'./document.{download_ext}', 'wb') as fp:
fp.write(fdata)
file_download = gr.DownloadButton(label=f'Download {download_ext.upper()} Doc',
visible=True, value=f'./document.{download_ext}')
return [response, '', uploaded_image_files, image_window, file_download, history,
uploaded_file_paths, new_inputs]
def show_help():
txt = '''
This is an agent using the OpenAI Python Agents SDK.
It has tools to:
* Search the Web
* Compute straight-line distances between locations
* Analyze images you upload.
* Create and display images you describe, which you can download.
* Use uploaded images and documents as context. (.txt., .pdf, .docx, .py)
* Get news from the web.
* Make PDF's, Word Documents and Excel spreadsheets based on results it generated.
* Generate Google Map Route information: distance, time, and route plan summary.
Agents perform multiple steps using tools as necessary to satisfy a single request.
1. Gemeral:
1.1 Login with user name and password (not case-sensitive)
1.2 Type prompts (questions, instructions) into "Prompt or Question" window.
2. Chat:
2.1 Upload any image(s) and/or documents (files) you want the agent to consider, using
the "Upload Image to Analyze" and "Upload Input File" buttons.
2.2 Enter prompt/question and tap the "Submit Prompt/Question" button. The responses appear
in the Dialog window.
2.3 Continue your session by optionally uploading more files and/or images and entering a
new prompt/question. The agent remembers past inputs and responses until you tap
the "Start New Session" button.
2.4 If topic changes or when done chatting, tap the "Start New Session" button.
3. Make Image:
3.1 Include description of desired image in prompt window. If desired, uploaded images and
files can also be used.
3.2 Tap the "Submit Prompt/Question" button. This can take a few seconds.
3.3 There is a download button on the image display if your system supports file downloads.
3.4 When done viewing image, tap the "Start New Session" button
Hints:
Better results are obtained by including detailed descriptions and instructions
of what you want in the prompt.
For Google route planning, specify each leg's start/end addresses, and list them
separately if multiple legs are involved. Also, if you want a scenic route or
favor public transportation, say so.
Start a new session whenever memory of previous inputs and responses is no longer
needed as context. The agent can only remember so much.
'''
return str(txt).replace('```', ' ').replace(' ', ' ').replace(' ', ' ').replace(' ', ' ').replace('\n','<br>')
def new_session(user_window, history):
history = []
clean_up_files()
return [prompt_window, history, 'Session cleared',
gr.Image(visible=False, value=None),
gr.Image(visible=False, value=None), [],
gr.DownloadButton(label='Download File', visible=False, value=None),
gr.File(visible=False, label='Upload File', type='filepath'), [] ]
with gr.Blocks() as demo:
password = gr.State("")
user = gr.State("unknown")
uploaded_image_files = gr.State([])
uploaded_file_paths = gr.State([])
history = gr.State([])
inputs = gr.State([])
gr.Markdown('# GPT Agent')
gr.Markdown('Enter user name & password. Tap "Help & Hints" button for more instructions.')
with gr.Row():
user_window = gr.Textbox(label = "User Name")
user_window.blur(fn=update_user, inputs=user_window, outputs=[user, user_window])
pwd_window = gr.Textbox(label = "Password")
help_button = gr.Button(value='Help & Hints')
with gr.Row():
clear_button = gr.Button(value="Start New Session")
button_upload_file = gr.Button(value='Upload Input File', interactive=False)
button_get_image = gr.Button(value='Upload Image to Analyze', interactive=False)
submit_button = gr.Button(value="Submit Prompt/Question")
with gr.Row():
prompt_window = gr.Textbox(label = "Prompt or Question", scale=7)
gr.Markdown('### **Dialog:**')
#output_window = gr.Text(container=True, label='Dialog')
output_window = gr.Markdown(container=True)
file_download = gr.DownloadButton(label='Download File', visible=False, value=None)
with gr.Row():
with gr.Column():
image_window2 = gr.Image(visible=False, interactive=True, label='Image to Analyze',
type='filepath')
with gr.Column():
image_window = gr.Image(visible=False, label='Generated Image')
with gr.Row():
file_uploader = gr.File(visible=False, label='Upload File', type='filepath')
submit_button.click(chat,
inputs=[prompt_window, user_window, password, history, output_window,
uploaded_image_files, uploaded_file_paths, inputs],
outputs=[output_window, prompt_window, uploaded_image_files,
image_window, file_download, history, uploaded_file_paths, inputs])
clear_button.click(fn=new_session, inputs=[user_window, history],
outputs=[prompt_window, history, output_window,
image_window, image_window2,
uploaded_image_files, file_download, file_uploader, inputs])
help_button.click(fn=show_help, outputs=output_window)
button_get_image.click(fn=upload_image,inputs = [user, password, output_window],
outputs = [image_window2, output_window])
image_window2.upload(fn=load_image,
inputs=[image_window2, user, output_window, uploaded_image_files],
outputs=[uploaded_image_files, output_window])
pwd_window.blur(updatePassword,
inputs = [pwd_window, user],
outputs = [password, pwd_window, button_upload_file, button_get_image])
button_upload_file.click(fn=upload_file, inputs=[user, password, output_window],
outputs=[file_uploader, output_window])
file_uploader.upload(fn=load_file, inputs=[file_uploader, output_window, uploaded_file_paths],
outputs=[uploaded_file_paths, output_window, file_uploader])
# demo.launch(share=True, allowed_paths=[dataDir], ssr_mode=False)
# demo.load(delete_db_files)
demo.unload(clean_up_files)
demo.launch(share=True, ssr_mode=False, theme=gr.themes.Soft())
|