Spaces:
Running
Running
Fix: Corrected model loading on startup in FastAPI app
Browse files- .dockerignore +6 -0
- Dockerfile +17 -0
- app.py +9 -0
- requirements.txt +16 -0
- translation_api.py +161 -0
.dockerignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.pyc
|
| 3 |
+
.git/
|
| 4 |
+
models/
|
| 5 |
+
*.safetensors
|
| 6 |
+
*.bin
|
Dockerfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
# Set working directory
|
| 4 |
+
WORKDIR /app
|
| 5 |
+
|
| 6 |
+
# Copy files
|
| 7 |
+
COPY . .
|
| 8 |
+
|
| 9 |
+
# Install dependencies
|
| 10 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 11 |
+
pip install --no-cache-dir -r requirements.txt
|
| 12 |
+
|
| 13 |
+
# Expose the default port used by Hugging Face Docker Spaces
|
| 14 |
+
EXPOSE 7860
|
| 15 |
+
|
| 16 |
+
# Start the FastAPI app using Uvicorn
|
| 17 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This imports the FastAPI app
|
| 2 |
+
from translation_api import app
|
| 3 |
+
|
| 4 |
+
# If needed, you can add any root route
|
| 5 |
+
@app.get("/")
|
| 6 |
+
def read_root():
|
| 7 |
+
return {"message": "Welcome to ChikaMo Translator API"}
|
| 8 |
+
|
| 9 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.41.2
|
| 2 |
+
datasets==2.19.1
|
| 3 |
+
torch>=2.2.0
|
| 4 |
+
fastapi==0.111.0
|
| 5 |
+
uvicorn==0.30.0
|
| 6 |
+
huggingface_hub
|
| 7 |
+
|
| 8 |
+
# googletrans==4.0.0-rc1
|
| 9 |
+
# β Conflict
|
| 10 |
+
deep-translator==1.11.4
|
| 11 |
+
#β
Modern replacement
|
| 12 |
+
|
| 13 |
+
python-dotenv==1.0.1
|
| 14 |
+
tqdm==4.66.4
|
| 15 |
+
scikit-learn==1.4.2
|
| 16 |
+
rich==13.7.
|
translation_api.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# translate_api.py
|
| 2 |
+
# Defines the FastAPI application for the Chiakamo Translator.
|
| 3 |
+
|
| 4 |
+
from fastapi import FastAPI, HTTPException
|
| 5 |
+
from pydantic import BaseModel
|
| 6 |
+
from transformers import MarianMTModel, MarianTokenizer, pipeline
|
| 7 |
+
import torch
|
| 8 |
+
import os # Import os for environment variables (e.g., HF_HOME)
|
| 9 |
+
|
| 10 |
+
# Initialize the FastAPI application
|
| 11 |
+
app = FastAPI(title="ChikaMo Translator API",
|
| 12 |
+
description="API for translating between Tagalog and English, with fallback to Helsinki-NLP models.")
|
| 13 |
+
|
| 14 |
+
# --- Model Configuration ---
|
| 15 |
+
# Define the Hugging Face model repository IDs for your custom models.
|
| 16 |
+
# These should be your repositories on Hugging Face Hub (e.g., chikamov1/opus-mt-tl-en-chikamo)
|
| 17 |
+
LOCAL_MODELS = {
|
| 18 |
+
"tl-en": "chikamov1/opus-mt-tl-en-chikamo", # Your custom Tagalog-to-English model
|
| 19 |
+
"en-tl": "chikamov1/opus-mt-en-tl-chikamo", # Your custom English-to-Tagalog model
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
# Define HuggingFace fallback models (Helsinki-NLP is a good choice)
|
| 23 |
+
FALLBACK_MODELS = {
|
| 24 |
+
"tl-en": "Helsinki-NLP/opus-mt-tl-en",
|
| 25 |
+
"en-tl": "Helsinki-NLP/opus-mt-en-tl",
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
# Dictionaries to store loaded models and tokenizers to avoid reloading on every request
|
| 29 |
+
loaded_models = {}
|
| 30 |
+
loaded_tokenizers = {}
|
| 31 |
+
fallback_pipelines = {}
|
| 32 |
+
|
| 33 |
+
# --- Model Loading Functions ---
|
| 34 |
+
|
| 35 |
+
# Function to get custom model and tokenizer (loads and caches)
|
| 36 |
+
def get_model_and_tokenizer(pair: str):
|
| 37 |
+
"""
|
| 38 |
+
Loads and caches the custom MarianMT model and tokenizer for a given language pair.
|
| 39 |
+
"""
|
| 40 |
+
if pair in LOCAL_MODELS:
|
| 41 |
+
if pair not in loaded_models:
|
| 42 |
+
print(f"Attempting to load local model: {LOCAL_MODELS[pair]}")
|
| 43 |
+
try:
|
| 44 |
+
# Load model and tokenizer from your Hugging Face Hub repository
|
| 45 |
+
model = MarianMTModel.from_pretrained(LOCAL_MODELS[pair])
|
| 46 |
+
tokenizer = MarianTokenizer.from_pretrained(LOCAL_MODELS[pair])
|
| 47 |
+
loaded_models[pair] = model
|
| 48 |
+
loaded_tokenizers[pair] = tokenizer
|
| 49 |
+
print(f"Successfully loaded local model: {LOCAL_MODELS[pair]}")
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Failed to load local model {LOCAL_MODELS[pair]}: {e}")
|
| 52 |
+
return None, None # Return None if loading fails
|
| 53 |
+
return loaded_models.get(pair), loaded_tokenizers.get(pair)
|
| 54 |
+
return None, None
|
| 55 |
+
|
| 56 |
+
# Function to get fallback pipeline (loads and caches)
|
| 57 |
+
def get_fallback_pipeline(pair: str):
|
| 58 |
+
"""
|
| 59 |
+
Loads and caches a fallback translation pipeline for a given language pair.
|
| 60 |
+
"""
|
| 61 |
+
if pair not in fallback_pipelines:
|
| 62 |
+
print(f"Attempting to load fallback model: {FALLBACK_MODELS[pair]}")
|
| 63 |
+
try:
|
| 64 |
+
# Use the pipeline abstraction for fallback models
|
| 65 |
+
pipe = pipeline("translation", model=FALLBACK_MODELS[pair])
|
| 66 |
+
fallback_pipelines[pair] = pipe
|
| 67 |
+
print(f"Successfully loaded fallback model: {FALLBACK_MODELS[pair]}")
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"Failed to load fallback model {FALLBACK_MODELS[pair]}: {e}")
|
| 70 |
+
return None # Return None if loading fails
|
| 71 |
+
return fallback_pipelines.get(pair)
|
| 72 |
+
|
| 73 |
+
# --- Pydantic Model for Request Body ---
|
| 74 |
+
class TranslationRequest(BaseModel):
|
| 75 |
+
"""
|
| 76 |
+
Defines the structure of the incoming JSON request for translation.
|
| 77 |
+
"""
|
| 78 |
+
source_lang: str # e.g., "tl" for Tagalog, "en" for English
|
| 79 |
+
target_lang: str # e.g., "en" for English, "tl" for Tagalog
|
| 80 |
+
text: str # The text to be translated
|
| 81 |
+
|
| 82 |
+
# --- API Endpoints ---
|
| 83 |
+
|
| 84 |
+
# Root endpoint for basic API information
|
| 85 |
+
@app.get("/")
|
| 86 |
+
def read_root():
|
| 87 |
+
"""
|
| 88 |
+
Returns a welcome message and API status.
|
| 89 |
+
"""
|
| 90 |
+
return {"message": "Welcome to ChikaMo Translator API", "status": "running"}
|
| 91 |
+
|
| 92 |
+
# Translation endpoint
|
| 93 |
+
@app.post("/translate")
|
| 94 |
+
def translate_text_endpoint(req: TranslationRequest):
|
| 95 |
+
"""
|
| 96 |
+
Translates text between specified source and target languages.
|
| 97 |
+
Prioritizes custom models, falls back to Helsinki-NLP if custom fails or is not found.
|
| 98 |
+
"""
|
| 99 |
+
pair = f"{req.source_lang.lower()}-{req.target_lang.lower()}"
|
| 100 |
+
text = req.text.strip()
|
| 101 |
+
|
| 102 |
+
if not text:
|
| 103 |
+
raise HTTPException(status_code=400, detail="Input text is empty.")
|
| 104 |
+
|
| 105 |
+
translated_output = ""
|
| 106 |
+
fallback_used = False
|
| 107 |
+
|
| 108 |
+
# Try to use local (custom) model first
|
| 109 |
+
model, tokenizer = get_model_and_tokenizer(pair)
|
| 110 |
+
if model and tokenizer:
|
| 111 |
+
try:
|
| 112 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 113 |
+
# Ensure model is on CPU if no GPU is available, or move to GPU if present
|
| 114 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 115 |
+
model.to(device)
|
| 116 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 117 |
+
|
| 118 |
+
with torch.no_grad():
|
| 119 |
+
translated = model.generate(**inputs)
|
| 120 |
+
translated_output = tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 121 |
+
fallback_used = False
|
| 122 |
+
except Exception as e:
|
| 123 |
+
print(f"Error during custom model translation for pair {pair}: {e}. Attempting fallback.")
|
| 124 |
+
# Clear to force fallback path
|
| 125 |
+
model, tokenizer = None, None
|
| 126 |
+
|
| 127 |
+
# If custom model failed or wasn't available, try fallback
|
| 128 |
+
if not model and pair in FALLBACK_MODELS:
|
| 129 |
+
pipe = get_fallback_pipeline(pair)
|
| 130 |
+
if pipe:
|
| 131 |
+
try:
|
| 132 |
+
translated_output = pipe(text)[0]["translation_text"]
|
| 133 |
+
fallback_used = True
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"Error during fallback model translation for pair {pair}: {e}.")
|
| 136 |
+
raise HTTPException(status_code=500, detail=f"Translation failed for pair {pair} with both custom and fallback models.")
|
| 137 |
+
else:
|
| 138 |
+
raise HTTPException(status_code=500, detail=f"Fallback model for pair {pair} could not be loaded.")
|
| 139 |
+
elif not model: # No custom model and no fallback defined
|
| 140 |
+
raise HTTPException(status_code=400, detail=f"Unsupported language pair: {pair}, and no fallback model configured.")
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
return {
|
| 144 |
+
"translation": translated_output,
|
| 145 |
+
"source_lang": req.source_lang,
|
| 146 |
+
"target_lang": req.target_lang,
|
| 147 |
+
"fallback_used": fallback_used
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
# --- Application Startup Event ---
|
| 151 |
+
# This ensures models are loaded when the FastAPI app starts up.
|
| 152 |
+
# This is crucial for Hugging Face Spaces where the app is started by Uvicorn.
|
| 153 |
+
@app.on_event("startup")
|
| 154 |
+
async def startup_event():
|
| 155 |
+
# Pre-load all local and fallback models during startup
|
| 156 |
+
print("Pre-loading models during application startup...")
|
| 157 |
+
for pair in LOCAL_MODELS.keys():
|
| 158 |
+
get_model_and_tokenizer(pair) # Attempt to load custom models
|
| 159 |
+
for pair in FALLBACK_MODELS.keys():
|
| 160 |
+
get_fallback_pipeline(pair) # Attempt to load fallback pipelines
|
| 161 |
+
print("Model pre-loading complete.")
|