Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -136,56 +136,70 @@ import torch
|
|
| 136 |
|
| 137 |
# Model options (ordered by preference)
|
| 138 |
QA_MODELS = [
|
| 139 |
-
"google/flan-t5-small",
|
| 140 |
-
"
|
| 141 |
-
"facebook/bart-large-cnn" # Fallback option
|
| 142 |
]
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
def
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
-
|
| 154 |
-
for model_name in QA_MODELS:
|
| 155 |
try:
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
)
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
)
|
| 171 |
|
| 172 |
-
|
| 173 |
-
logger.info(f"Successfully loaded model: {model_name}")
|
| 174 |
-
return qa_model
|
| 175 |
|
| 176 |
except Exception as e:
|
| 177 |
-
logger.
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
logger.error("All model loading attempts failed")
|
| 181 |
-
raise HTTPException(
|
| 182 |
-
status_code=500,
|
| 183 |
-
detail={
|
| 184 |
-
"error": "QA system initialization failed",
|
| 185 |
-
"tried_models": QA_MODELS,
|
| 186 |
-
"suggestion": "Check available memory or try smaller models"
|
| 187 |
-
}
|
| 188 |
-
)
|
| 189 |
|
| 190 |
|
| 191 |
|
|
@@ -878,43 +892,63 @@ from typing import Optional
|
|
| 878 |
|
| 879 |
@app.post("/qa")
|
| 880 |
async def question_answering(
|
| 881 |
-
request: Request,
|
| 882 |
question: str = Form(...),
|
| 883 |
file: Optional[UploadFile] = File(None),
|
| 884 |
language: str = Form("en")
|
| 885 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 886 |
try:
|
| 887 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 888 |
try:
|
| 889 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 890 |
except Exception as e:
|
| 891 |
-
logger.
|
| 892 |
-
raise HTTPException(
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
"source": "document" if file else "general knowledge",
|
| 902 |
-
"language": language
|
| 903 |
-
}
|
| 904 |
|
| 905 |
except HTTPException:
|
| 906 |
raise
|
| 907 |
except Exception as e:
|
| 908 |
-
logger.
|
| 909 |
-
raise HTTPException(
|
| 910 |
-
500,
|
| 911 |
-
detail={
|
| 912 |
-
"error": "QA processing failed",
|
| 913 |
-
"model": current_model_name,
|
| 914 |
-
"input_question": question[:100] + "..." if question else None,
|
| 915 |
-
"file_type": file.filename.split('.')[-1] if file else None
|
| 916 |
-
}
|
| 917 |
-
)
|
| 918 |
|
| 919 |
|
| 920 |
|
|
|
|
| 136 |
|
| 137 |
# Model options (ordered by preference)
|
| 138 |
QA_MODELS = [
|
| 139 |
+
{"name": "google/flan-t5-small", "max_length": 512},
|
| 140 |
+
{"name": "facebook/bart-large-cnn", "max_length": 1024}
|
|
|
|
| 141 |
]
|
| 142 |
|
| 143 |
+
class QASystem:
|
| 144 |
+
def __init__(self):
|
| 145 |
+
self.model = None
|
| 146 |
+
self.tokenizer = None
|
| 147 |
+
self.current_model = None
|
| 148 |
+
self.device = 0 if torch.cuda.is_available() else -1
|
| 149 |
|
| 150 |
+
def load_model(self):
|
| 151 |
+
for model_info in QA_MODELS:
|
| 152 |
+
try:
|
| 153 |
+
logger.info(f"Loading model: {model_info['name']}")
|
| 154 |
+
|
| 155 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_info["name"])
|
| 156 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 157 |
+
model_info["name"],
|
| 158 |
+
device_map="auto",
|
| 159 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 160 |
+
)
|
| 161 |
+
self.current_model = model_info
|
| 162 |
+
logger.info(f"Successfully loaded {model_info['name']}")
|
| 163 |
+
return True
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
logger.warning(f"Failed to load {model_info['name']}: {str(e)}")
|
| 167 |
+
continue
|
| 168 |
+
|
| 169 |
+
logger.error("All model loading attempts failed")
|
| 170 |
+
return False
|
| 171 |
|
| 172 |
+
def generate_answer(self, question: str, context: Optional[str] = None):
|
|
|
|
| 173 |
try:
|
| 174 |
+
if context:
|
| 175 |
+
input_text = f"question: {question} context: {context[:2000]}"
|
| 176 |
+
else:
|
| 177 |
+
input_text = f"question: {question}"
|
| 178 |
|
| 179 |
+
inputs = self.tokenizer(
|
| 180 |
+
input_text,
|
| 181 |
+
return_tensors="pt",
|
| 182 |
+
truncation=True,
|
| 183 |
+
max_length=self.current_model["max_length"]
|
| 184 |
+
).to(self.device)
|
| 185 |
|
| 186 |
+
outputs = self.model.generate(
|
| 187 |
+
**inputs,
|
| 188 |
+
max_new_tokens=200,
|
| 189 |
+
num_beams=4,
|
| 190 |
+
early_stopping=True
|
| 191 |
)
|
| 192 |
|
| 193 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 194 |
|
| 195 |
except Exception as e:
|
| 196 |
+
logger.error(f"Generation failed: {str(e)}")
|
| 197 |
+
raise
|
| 198 |
+
|
| 199 |
+
# Initialize QA system
|
| 200 |
+
qa_system = QASystem()
|
| 201 |
+
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
|
| 205 |
|
|
|
|
| 892 |
|
| 893 |
@app.post("/qa")
|
| 894 |
async def question_answering(
|
|
|
|
| 895 |
question: str = Form(...),
|
| 896 |
file: Optional[UploadFile] = File(None),
|
| 897 |
language: str = Form("en")
|
| 898 |
):
|
| 899 |
+
# Initialize model if not loaded
|
| 900 |
+
if not qa_system.model:
|
| 901 |
+
if not qa_system.load_model():
|
| 902 |
+
raise HTTPException(
|
| 903 |
+
500,
|
| 904 |
+
detail={
|
| 905 |
+
"error": "System initialization failed",
|
| 906 |
+
"tried_models": [m["name"] for m in QA_MODELS],
|
| 907 |
+
"suggestion": "Check logs for loading errors"
|
| 908 |
+
}
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
try:
|
| 912 |
+
# Process file if provided
|
| 913 |
+
context = None
|
| 914 |
+
if file:
|
| 915 |
+
try:
|
| 916 |
+
file_ext, content = await process_uploaded_file(file)
|
| 917 |
+
context = extract_text(content, file_ext)
|
| 918 |
+
context = re.sub(r'\s+', ' ', context).strip()[:3000]
|
| 919 |
+
except Exception as e:
|
| 920 |
+
logger.error(f"File processing failed: {str(e)}")
|
| 921 |
+
raise HTTPException(422, detail=f"File processing error: {str(e)}")
|
| 922 |
+
|
| 923 |
+
# Generate answer
|
| 924 |
try:
|
| 925 |
+
answer = qa_system.generate_answer(question, context)
|
| 926 |
+
|
| 927 |
+
return {
|
| 928 |
+
"question": question,
|
| 929 |
+
"answer": answer,
|
| 930 |
+
"model": qa_system.current_model["name"],
|
| 931 |
+
"source": "document" if context else "general",
|
| 932 |
+
"language": language
|
| 933 |
+
}
|
| 934 |
+
|
| 935 |
except Exception as e:
|
| 936 |
+
logger.error(f"Answer generation failed: {str(e)}")
|
| 937 |
+
raise HTTPException(
|
| 938 |
+
500,
|
| 939 |
+
detail={
|
| 940 |
+
"error": "Answer generation failed",
|
| 941 |
+
"model": qa_system.current_model["name"],
|
| 942 |
+
"input_length": len(question) + (len(context) if context else 0),
|
| 943 |
+
"suggestion": "Try simplifying your question or reducing document size"
|
| 944 |
+
}
|
| 945 |
+
)
|
|
|
|
|
|
|
|
|
|
| 946 |
|
| 947 |
except HTTPException:
|
| 948 |
raise
|
| 949 |
except Exception as e:
|
| 950 |
+
logger.critical(f"Unexpected error: {str(e)}")
|
| 951 |
+
raise HTTPException(500, "Internal server error")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 952 |
|
| 953 |
|
| 954 |
|