Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -17,6 +17,13 @@ from slowapi import Limiter
|
|
| 17 |
from slowapi.util import get_remote_address
|
| 18 |
from slowapi.errors import RateLimitExceeded
|
| 19 |
from slowapi.middleware import SlowAPIMiddleware
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Initialize rate limiter
|
| 22 |
limiter = Limiter(key_func=get_remote_address)
|
|
@@ -248,5 +255,161 @@ async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
|
|
| 248 |
content={"detail": "Too many requests. Please try again later."}
|
| 249 |
)
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
if __name__ == "__main__":
|
| 252 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 17 |
from slowapi.util import get_remote_address
|
| 18 |
from slowapi.errors import RateLimitExceeded
|
| 19 |
from slowapi.middleware import SlowAPIMiddleware
|
| 20 |
+
import matplotlib.pyplot as plt
|
| 21 |
+
import seaborn as sns
|
| 22 |
+
import tempfile
|
| 23 |
+
import base64
|
| 24 |
+
from io import BytesIO
|
| 25 |
+
from typing import Optional
|
| 26 |
+
from pydantic import BaseModel
|
| 27 |
|
| 28 |
# Initialize rate limiter
|
| 29 |
limiter = Limiter(key_func=get_remote_address)
|
|
|
|
| 255 |
content={"detail": "Too many requests. Please try again later."}
|
| 256 |
)
|
| 257 |
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
# Add this new Pydantic model for visualization requests
|
| 263 |
+
class VisualizationRequest(BaseModel):
|
| 264 |
+
chart_type: str
|
| 265 |
+
x_column: Optional[str] = None
|
| 266 |
+
y_column: Optional[str] = None
|
| 267 |
+
hue_column: Optional[str] = None
|
| 268 |
+
title: Optional[str] = None
|
| 269 |
+
x_label: Optional[str] = None
|
| 270 |
+
y_label: Optional[str] = None
|
| 271 |
+
style: str = "seaborn" # seaborn or matplotlib
|
| 272 |
+
|
| 273 |
+
# Add this new function for visualization code generation
|
| 274 |
+
def generate_visualization(df: pd.DataFrame, request: VisualizationRequest) -> str:
|
| 275 |
+
"""Generate and execute visualization code based on request"""
|
| 276 |
+
plt.style.use(request.style)
|
| 277 |
+
|
| 278 |
+
code_lines = [
|
| 279 |
+
"import matplotlib.pyplot as plt",
|
| 280 |
+
"import seaborn as sns",
|
| 281 |
+
"import pandas as pd",
|
| 282 |
+
"",
|
| 283 |
+
"# Data preparation",
|
| 284 |
+
f"df = pd.DataFrame({df.head().to_dict()})", # Simplified for demo
|
| 285 |
+
"",
|
| 286 |
+
"# Visualization code"
|
| 287 |
+
]
|
| 288 |
+
|
| 289 |
+
if request.chart_type == "line":
|
| 290 |
+
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
| 291 |
+
if request.hue_column:
|
| 292 |
+
code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
| 293 |
+
else:
|
| 294 |
+
code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
|
| 295 |
+
elif request.chart_type == "bar":
|
| 296 |
+
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
| 297 |
+
if request.hue_column:
|
| 298 |
+
code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
| 299 |
+
else:
|
| 300 |
+
code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
|
| 301 |
+
elif request.chart_type == "scatter":
|
| 302 |
+
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
| 303 |
+
if request.hue_column:
|
| 304 |
+
code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
|
| 305 |
+
else:
|
| 306 |
+
code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
|
| 307 |
+
elif request.chart_type == "histogram":
|
| 308 |
+
code_lines.append(f"plt.figure(figsize=(10, 6))")
|
| 309 |
+
code_lines.append(f"plt.hist(df['{request.x_column}'], bins=20)")
|
| 310 |
+
else:
|
| 311 |
+
raise ValueError("Unsupported chart type")
|
| 312 |
+
|
| 313 |
+
# Add labels and title
|
| 314 |
+
if request.title:
|
| 315 |
+
code_lines.append(f"plt.title('{request.title}')")
|
| 316 |
+
if request.x_label:
|
| 317 |
+
code_lines.append(f"plt.xlabel('{request.x_label}')")
|
| 318 |
+
if request.y_label:
|
| 319 |
+
code_lines.append(f"plt.ylabel('{request.y_label}')")
|
| 320 |
+
|
| 321 |
+
code_lines.append("plt.tight_layout()")
|
| 322 |
+
code_lines.append("plt.show()")
|
| 323 |
+
|
| 324 |
+
return "\n".join(code_lines)
|
| 325 |
+
|
| 326 |
+
# Add this new endpoint for visualization
|
| 327 |
+
@app.post("/visualize")
|
| 328 |
+
@limiter.limit("5/minute")
|
| 329 |
+
async def generate_visualization_from_excel(
|
| 330 |
+
request: Request,
|
| 331 |
+
file: UploadFile = File(...),
|
| 332 |
+
chart_type: str = Form(...),
|
| 333 |
+
x_column: Optional[str] = Form(None),
|
| 334 |
+
y_column: Optional[str] = Form(None),
|
| 335 |
+
hue_column: Optional[str] = Form(None),
|
| 336 |
+
title: Optional[str] = Form(None),
|
| 337 |
+
x_label: Optional[str] = Form(None),
|
| 338 |
+
y_label: Optional[str] = Form(None),
|
| 339 |
+
style: str = Form("seaborn")
|
| 340 |
+
):
|
| 341 |
+
try:
|
| 342 |
+
# Validate file
|
| 343 |
+
file_ext, content = await validate_file(file)
|
| 344 |
+
if file_ext not in {"xlsx", "xls"}:
|
| 345 |
+
raise HTTPException(400, "Only Excel files are supported for visualization")
|
| 346 |
+
|
| 347 |
+
# Read Excel file
|
| 348 |
+
df = pd.read_excel(io.BytesIO(content))
|
| 349 |
+
|
| 350 |
+
# Generate visualization request
|
| 351 |
+
vis_request = VisualizationRequest(
|
| 352 |
+
chart_type=chart_type,
|
| 353 |
+
x_column=x_column,
|
| 354 |
+
y_column=y_column,
|
| 355 |
+
hue_column=hue_column,
|
| 356 |
+
title=title,
|
| 357 |
+
x_label=x_label,
|
| 358 |
+
y_label=y_label,
|
| 359 |
+
style=style
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
# Generate and execute the visualization code
|
| 363 |
+
plt.figure()
|
| 364 |
+
exec(generate_visualization(df, vis_request), globals(), locals())
|
| 365 |
+
|
| 366 |
+
# Save the plot to a temporary file
|
| 367 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
|
| 368 |
+
plt.savefig(tmpfile.name, format='png', dpi=300)
|
| 369 |
+
plt.close()
|
| 370 |
+
|
| 371 |
+
# Read the image back as bytes
|
| 372 |
+
with open(tmpfile.name, "rb") as f:
|
| 373 |
+
image_bytes = f.read()
|
| 374 |
+
|
| 375 |
+
# Encode image as base64
|
| 376 |
+
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
|
| 377 |
+
|
| 378 |
+
return {
|
| 379 |
+
"status": "success",
|
| 380 |
+
"image": f"data:image/png;base64,{image_base64}",
|
| 381 |
+
"code": generate_visualization(df, vis_request)
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
except HTTPException:
|
| 385 |
+
raise
|
| 386 |
+
except Exception as e:
|
| 387 |
+
logger.error(f"Visualization failed: {str(e)}\n{traceback.format_exc()}")
|
| 388 |
+
raise HTTPException(500, detail=f"Visualization failed: {str(e)}")
|
| 389 |
+
|
| 390 |
+
# Add this new endpoint for getting column names
|
| 391 |
+
@app.post("/get_columns")
|
| 392 |
+
@limiter.limit("10/minute")
|
| 393 |
+
async def get_excel_columns(
|
| 394 |
+
request: Request,
|
| 395 |
+
file: UploadFile = File(...)
|
| 396 |
+
):
|
| 397 |
+
try:
|
| 398 |
+
file_ext, content = await validate_file(file)
|
| 399 |
+
if file_ext not in {"xlsx", "xls"}:
|
| 400 |
+
raise HTTPException(400, "Only Excel files are supported")
|
| 401 |
+
|
| 402 |
+
df = pd.read_excel(io.BytesIO(content))
|
| 403 |
+
return {
|
| 404 |
+
"columns": list(df.columns),
|
| 405 |
+
"sample_data": df.head().to_dict(orient='records')
|
| 406 |
+
}
|
| 407 |
+
except Exception as e:
|
| 408 |
+
logger.error(f"Column extraction failed: {str(e)}")
|
| 409 |
+
raise HTTPException(500, detail="Failed to extract columns from Excel file")
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
|
| 414 |
if __name__ == "__main__":
|
| 415 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|