File size: 18,503 Bytes
cf4a73b c096ba0 cf4a73b 6b5a4bf c096ba0 294f350 c096ba0 1aadc7b c096ba0 1aadc7b c096ba0 1aadc7b c096ba0 1aadc7b c096ba0 1aadc7b c096ba0 1aadc7b c096ba0 1aadc7b c096ba0 1aadc7b 6b5a4bf 1aadc7b c096ba0 6b5a4bf c096ba0 6b5a4bf c096ba0 6b5a4bf c096ba0 6b5a4bf c096ba0 44d7920 cf4a73b c3483ff 2dc98d1 cf4a73b c3483ff cf4a73b 2dc98d1 c3483ff 2dc98d1 c3483ff cf4a73b c3483ff cf4a73b c3483ff c096ba0 2dc98d1 c3483ff c096ba0 c3483ff cf4a73b 2dc98d1 c3483ff 2dc98d1 cf4a73b c3483ff c096ba0 c3483ff c096ba0 6b5a4bf cf4a73b c3483ff c096ba0 c3483ff e0c35e4 c3483ff c096ba0 c3483ff c096ba0 c3483ff c096ba0 e0c35e4 c3483ff e0c35e4 c096ba0 c3483ff c096ba0 e0c35e4 c3483ff e0c35e4 c3483ff e0c35e4 c096ba0 e0c35e4 c3483ff 1aadc7b c3483ff e0c35e4 c096ba0 c3483ff c096ba0 cf4a73b c096ba0 c3483ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
# =========================================================
# KIEMBU ↔ ENGLISH — NRF KENYA TRANSLATION SUITE
# =========================================================
import os
import gradio as gr
import fitz
import faiss
import re
import numpy as np
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.enums import TA_JUSTIFY, TA_CENTER
from reportlab.lib.units import inch
from reportlab.pdfbase.cidfonts import UnicodeCIDFont
from reportlab.pdfbase import pdfmetrics
from PyPDF2 import PdfReader
# ============================================
# SECTION 1 — SIMPLE DICTIONARY TRANSLATOR
# ============================================
# ===========================================
# Kiembu ↔ English Dictionary (Case & Punctuation Insensitive)
# ===========================================
kiembu_to_english = {
# Existing entries
"Uvoro": "how are you", "Ri?": "When?", "Ku?": "Where?", "Uka": "come",
"Hava": "here", "Varia": "there", "Vakuve": "close", "Kuraca": "far",
"Ciakwa": "my/mine", "Cucu": "grandmother", "Mundu": "person",
"Andu": "people", "Mwana": "child", "Mutumia": "woman", "Muthuri": "man",
"Ngai": "God", "Wendo": "love", "Ngui": "dog", "Nyomba": "house", "Ndawa": "medicine",
"Maaĩ": "water", "Mwaki": "fire", "Rĩũa": "sun", "Mweri": "moon", "Njata": "star",
"ĩthiga": "stone", "Mũtĩ": "tree", "ĩthangũ": "leaf", "Mũri": "root", "ĩkoro": "bark",
"MũndũMũrume": "man", "MũndũMũka": "woman", "fafa": "father", "Mami": "mother",
"Gũtũ": "ear", "Ritho": "eye", "ĩniũrũ": "nose", "Kanyua": "mouth", "ĩgego": "tooth",
"rũrĩmĩ": "tongue", "Njara": "hand", "Kũgũrũ": "foot", "Thakame": "blood", "ĩvĩndĩ": "bone",
"Ngothi": "skin", "Nyama": "meat", "Nthamaki": "fish", "Giconi": "bird", "ĩtumbĩ": "egg",
"Nvĩa": "horn", "Mũkia": "tail", "ĩvuta": "feather", "Njuĩrĩ": "hair", "Kĩongo": "head",
"Ngingo": "neck", "Mũrukuthu": "back", "Ngoro": "heart", "Itema": "liver", "nyua": "drink",
"ria": "eat", "mama": "sleep", "kua": "die", "ũka": "come", "ona": "see", "ĩgua": "hear",
"menya": "know", "ĩciria": "think", "uga": "say", "ĩmwe": "one", "ĩgarĩ": "two",
"ĩthatũ": "three", "ĩnya": "four", "ĩthano": "five", "ithathatu": "six", "mugwanja": "seven",
"inyanya": "eight", "kenda": "nine", "ĩkumi": "ten", "nene": "big", "nini": "small",
"ndaca": "long", "nguvi": "short", "mbega": "good", "njũku": "bad", "mbĩcuru": "full",
"ĩtikĩndu": "empty", "nviũ": "hot", "nvoru": "cold", "ũtukũ": "night", "Mũthenya": "day",
"Mbura": "rain", "rũkũngi": "wind", "nthĩ": "earth", "kĩrĩma": "mountain", "rũnjĩ": "river",
"ĩria": "lake/sea", "cumbĩ": "salt", "mũthanga": "sand", "ndogo": "smoke", "nyaki": "grass",
"njira": "path", "kivaro": "field", "kuraca": "far", "vakuvi": "near", "ava": "here",
"varia": "there", "ũũ": "who", "ndwi": "what", "kũ": "where", "rĩ": "when", "atia": "how",
"ka": "not", "onthe": "all", "engĩ": "many", "anini": "few", "jerũ": "new", "ngũrũ": "old",
"kĩthũrũrũ": "round", "kaũgĩ": "sharp", "ritwa": "name", "tirama": "stand", "ĩkara": "sit",
"thiĩ": "walk", "ngaria": "run", "va": "give", "oca": "take", "nyita": "hold",
"tiniaa": "cut", "ringa": "hit", "ikia": "throw", "via": "burn", "ĩthambĩra": "swim",
"ina": "sing", "katika": "dance", "theka": "laugh", "rĩra": "cry", "rũma": "bite",
"mumunya": "suck", "nungira": "smell", "ĩtigĩra": "fear", "wina toro": "sleepy",
"mũvũtu": "hungry", "mũnyondu": "thirsty", "ndune": "red", "njerũ": "white",
"mbirũ": "black", "ngirini": "green", "yellũ": "yellow", "mbulu": "blue",
"matu": "cloud", "maturĩ": "sky", "rũkũngũ": "dust", "mũu": "ashes", "mũkanda": "rope",
"kamũti": "stick", "kaviũ": "knife", "ũta": "bow", "mũgwi": "arrow", "itumũ": "spear",
"gitegithamaki": "fishhook", "neti": "net", "ĩtaru": "canoe", "mũrango": "door",
"ĩtara": "roof", "nthĩ": "floor", "Mũgeka": "mat", "kĩtanda": "bed", "mũrengeti": "blanket",
"nyũngũ": "pot", "kanya": "calabash", "gĩkapũ": "basket", "nduramu": "drum",
"rwĩmbo": "song", "rũgano": "story", "thakania": "play", "mũrata": "friend",
"nthũ": "enemy", "civũ": "chief", "mũkũrũ": "elder", "ĩria": "milk", "ngombe": "cow/cattle",
"mbũri": "goat", "ngondu": "sheep", "ngũkũ": "chicken", "ngamĩra": "camel",
"nvuda": "donkey", "ndegwa": "ox", "mbegũ": "seed", "ketha": "harvest", "ũma": "hoe",
"ĩthanwa": "axe", "mũro": "digging stick", "Mũtumi ciodo": "weaver",
"Mwaki nyũngũ": "potter", "mũturi": "blacksmith", "mũgwĩmi": "hunter",
"mũrĩthi": "herdsman", "mũteginthamaki": "fisherman", "thoko": "market",
"kwendia": "trade", "cenjania": "barter", "mathaa": "time", "mavinda": "season",
"ĩvinda rĩa riũa": "dry season", "ivinda ria mbura": "rainy season", "rĩũra": "famine",
"thayũ": "peace", "mbara": "war", "gũrana": "marriage", "mũviki": "bride",
"mũvikania": "groom", "ĩrua": "initiation", "kũrua": "circumcision",
"kĩkuũ": "death", "ngoma": "spirit", "ngomi": "ancestor", "mũgĩmbĩ": "finger millet",
"mũkombi": "pearl millet", "mwere": "bulrush millet", "mũvia": "sorghum",
"mbembe": "maize", "minji": "cowpea", "ndengũ": "green gram", "njavĩ": "pigeon pea",
"ndũma": "arrowroot/taro", "mwanga": "cassava", "gĩkũa": "yam", "ngwacĩ": "sweet potato",
"ĩrenge": "pumpkin", "sukuma": "kale", "terere": "amaranth", "Thageti": "spider plant",
"kaũrũra": "pumpkin leaves", "kunde": "cowpea leaves", "Mabuyu": "baobab fruit",
"nthithi": "tamarind", "mbera": "guava", "matimoko": "custard apple/soursop",
"macuca": "loquat", "kĩgwa": "sugarcane", "njahĩ": "sesame", "Marũrũ": "sunflower",
"mbiringanya": "eggplant", "nyanya": "tomato", "gĩtũngũrũ": "onion",
"kĩtũngũrũ saumu": "garlic", "tangauthi": "ginger", "murende": "turmeric",
"nduru": "chili", "mboga": "cabbage", "karati": "carrot", "njukĩ": "bee", "ukĩ": "honey",
"mwatu": "beehive", "mabaki": "wax", "maguta": "butter", "kĩrimũ": "cream",
"alenya": "ghee", "ĩria ra kũgandithua": "sour milk"
}
# --- Helper: Normalize user input ---
def normalize(text):
"""
Cleans text for case-insensitive and punctuation-insensitive lookup.
Removes punctuation (.,?!-), converts to lowercase, trims spaces.
"""
text = text.lower().strip()
text = re.sub(r"[.,?!-]", "", text) # remove punctuation
return text
# --- Prepare lookup tables (in lowercase) ---
kiembu_lower = {normalize(k): v for k, v in kiembu_to_english.items()}
english_lower = {normalize(v): k for k, v in kiembu_to_english.items()}
# --- Translation Function ---
def translate_word(word, direction):
"""Translate a word between Kiembu and English, ignoring case & punctuation."""
cleaned = normalize(word)
if direction == "Kiembu → English":
return kiembu_lower.get(cleaned, "Not found in dictionary")
elif direction == "English → Kiembu":
return english_lower.get(cleaned, "Not found in dictionary")
else:
return "Invalid translation direction. Use 'Kiembu → English' or 'English → Kiembu'."
# ============================================
# SECTION 2 — PDF TRANSLATION (Transformer + PDF)
# ============================================
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-sw") # placeholder
def extract_text_from_pdf(pdf_file):
reader = PdfReader(pdf_file)
text = ""
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text.strip()
def translate_text(text):
chunks = text.split(". ")
translated = []
for chunk in chunks:
if chunk.strip():
try:
tr = translator(chunk.strip())[0]["translation_text"]
translated.append(tr)
except Exception:
translated.append(chunk)
return ". ".join(translated)
def create_pdf(translated_text, output_path="translated_output.pdf"):
pdfmetrics.registerFont(UnicodeCIDFont('HeiseiKakuGo-W5'))
doc = SimpleDocTemplate(output_path, pagesize=A4, rightMargin=60, leftMargin=60, topMargin=72, bottomMargin=72)
styles = getSampleStyleSheet()
title_style = ParagraphStyle(name='TitleStyle', parent=styles['Heading1'],
alignment=TA_CENTER, fontName='HeiseiKakuGo-W5',
fontSize=16, spaceAfter=20)
body_style = ParagraphStyle(name='BodyStyle', parent=styles['Normal'],
alignment=TA_JUSTIFY, fontName='HeiseiKakuGo-W5',
fontSize=12, leading=16)
story = [Paragraph("Translated Document — English → Kiembu", title_style),
Spacer(1, 0.3 * inch)]
for para in translated_text.split("\n"):
if para.strip():
story.append(Paragraph(para.strip(), body_style))
story.append(Spacer(1, 0.2 * inch))
doc.build(story)
return output_path
def translate_pdf_to_kiembu(pdf_file):
text = extract_text_from_pdf(pdf_file.name)
if not text:
return None, "No readable text found in the uploaded PDF."
translated_text = translate_text(text)
output_pdf_path = create_pdf(translated_text)
return output_pdf_path, "Translation complete! Download below."
# ============================================
# SECTION 3 — NRF LLM MODEL PDF CHAT
# ============================================
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
model_name = "google/gemma-2b-it"
hf_token = os.getenv("NRF_LLM_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", use_auth_token=hf_token)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=200)
chunks, index, pdf_loaded = [], None, False
def extract_pdf_text(pdf_file):
doc = fitz.open(pdf_file.name)
text = ""
for page in doc:
text += page.get_text()
return text
def chunk_text(text, chunk_size=500, overlap=100):
words = text.split()
chunk_list = []
start = 0
while start < len(words):
end = min(start + chunk_size, len(words))
chunk_list.append(" ".join(words[start:end]))
start += chunk_size - overlap
return chunk_list
def embed_chunks(chunks_list):
embeddings = embed_model.encode(chunks_list)
idx = faiss.IndexFlatL2(embeddings.shape[1])
idx.add(np.array(embeddings))
return idx
def load_pdf_and_prepare(pdf_file):
global chunks, index, pdf_loaded
try:
text = extract_pdf_text(pdf_file)
chunks = chunk_text(text)
index = embed_chunks(chunks)
pdf_loaded = True
return "✅ PDF uploaded and processed successfully."
except Exception as e:
return f"❌ Error: {str(e)}"
def delete_pdf():
global chunks, index, pdf_loaded
chunks, index, pdf_loaded = [], None, False
return "🗑️ PDF cleared. Ready for new upload."
def query_pdf(question, top_k=3):
if not pdf_loaded:
return "⚠️ Please upload and process a PDF first."
question_embedding = embed_model.encode([question])
D, I = index.search(np.array(question_embedding), top_k)
context = "\n".join([chunks[i] for i in I[0]])
prompt = f"Answer the question using the context:\n\n{context}\n\nQuestion: {question}\nAnswer:"
response = generator(prompt)[0]["generated_text"]
return response.split("Answer:")[-1].strip()
# ============================================
# SECTION 4 — ENHANCED GRADIO UI
# ============================================
def build_app():
custom_css = """
body {
background: #f5f5f5;
margin: 0;
padding: 0;
overflow: auto;
}
.gradio-container {
display: flex;
flex-direction: column;
align-items: center;
justify-content: flex-start;
min-height: 100vh;
padding: 30px 15px;
box-sizing: border-box;
border: 2px solid #ccc;
border-radius: 16px;
box-shadow: 0 4px 16px rgba(0,0,0,0.1);
background: white;
max-width: 900px;
margin: 20px auto;
overflow-y: auto;
}
::-webkit-scrollbar {
width: 10px;
}
::-webkit-scrollbar-track {
background: #eee;
border-radius: 10px;
}
::-webkit-scrollbar-thumb {
background: #aaa;
border-radius: 10px;
}
::-webkit-scrollbar-thumb:hover {
background: #777;
}
textarea, input[type="text"], .gr-textbox, .gr-input {
border: 2px solid #bbb !important;
border-radius: 10px !important;
padding: 8px !important;
box-shadow: inset 0 2px 4px rgba(0,0,0,0.05);
transition: border-color 0.2s ease, box-shadow 0.2s ease;
}
textarea:focus, input[type="text"]:focus {
border-color: #0078D7 !important;
box-shadow: 0 0 5px rgba(0,120,215,0.3) !important;
outline: none;
}
button, .gr-button {
border-radius: 10px !important;
padding: 10px 16px !important;
font-weight: 600 !important;
}
"""
with gr.Blocks(
title="Kiembu ↔ English — NRF Kenya Project",
css=custom_css,
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")
) as app:
gr.Markdown("""
<div style='text-align:center'>
<h1 style='color:#003366;'>Kiembu ↔ English Translation Suite</h1>
<h3 style='color:#d4a017;'>Funded by NRF Kenya — Creating LLMs that Understand Native Languages</h3>
<hr style='border:1px solid #003366;width:80%;margin:auto'>
</div>
""")
with gr.Tabs():
# -----------------------------
# TAB 1: DICTIONARY TRANSLATOR
# -----------------------------
with gr.TabItem("Dictionary Translator"):
gr.Markdown("""
### Quick Word Translation — **Kiembu ↔ English**
Enter a single word or short phrase and get its translation instantly.
**Sample Words:**
| Kiembu | English |
|:--|:--|
| Uvoro | how are you |
| Ri? | When? |
| Ku? | Where? |
| Uka | come |
""")
inp = gr.Textbox(label="Enter Word", placeholder="e.g. 'Uvoro' or 'how are you'", lines=1)
dir_sel = gr.Radio(
["Kiembu → English", "English → Kiembu"],
value="Kiembu → English",
label="Select Direction"
)
out = gr.Textbox(label="Translation Result")
gr.Button("Translate").click(translate_word, [inp, dir_sel], out)
# -----------------------------
# TAB 2: PDF TRANSLATION
# -----------------------------
with gr.TabItem("PDF Translation"):
gr.Markdown("""
### **English → Kiembu PDF Translator**
Upload an **English PDF document** (e.g., ID form, hospital form, passport form)
and get a **translated PDF in Kiembu** for download.
""")
pdf_input = gr.File(label="Upload English PDF", file_types=[".pdf"])
translate_btn = gr.Button("Translate to Kiembu")
output_file = gr.File(label="Download Translated PDF")
status = gr.Textbox(label="Status", interactive=False)
translate_btn.click(translate_pdf_to_kiembu, inputs=[pdf_input], outputs=[output_file, status])
# -----------------------------
# TAB 3: NRF LLM MODEL Q&A
# -----------------------------
with gr.TabItem("PDF Chat (NRF LLM Model)"):
gr.Markdown("""
### **Interactive PDF Chat — NRF LLM Model**
Upload any **informative PDF** (e.g., government report, history book, or manual)
and ask natural-language questions to understand its content better.
**Examples:**
- "What does this document say about birth registration?"
- "Summarize Chapter 2."
""")
pdf = gr.File(label="Upload PDF Document")
status = gr.Textbox(label="Status")
gr.Button("Process PDF").click(load_pdf_and_prepare, pdf, status)
gr.Button("Clear PDF").click(delete_pdf, None, status)
q = gr.Textbox(lines=2, label="Ask a Question", placeholder="e.g. 'Summarize the introduction section.'")
ans = gr.Textbox(lines=6, label="Answer")
gr.Button("Query PDF").click(query_pdf, q, ans)
# -----------------------------
# TAB 4: ABOUT
# -----------------------------
with gr.TabItem("About"):
gr.Markdown("""
### About the Project
The **NRF Kenya Project** on *Creating LLMs that Understand Native Languages*
aims to preserve and promote indigenous linguistic heritage through advanced AI translation tools.
- **Languages Supported:** Kiembu ↔ English
- **Core Engine:** NRF LLM Model under development
- **:** Principal Investigator: Prof Lucy Kawira – Chuka University
- **Developed by: Technical Team: Coordinator- Casam Njagi – Chuka University
- **Funding Agency:** National Research Fund (NRF), Kenya
- **Objective:** Foster inclusion of native languages in AI-driven communication.
""")
gr.Markdown("""
<hr style='border:0.5px solid #ccc'>
<div style='text-align:center;color:#003366;font-size:14px'>
© 2025 National Research Fund (NRF) Kenya — All Rights Reserved
</div>
""")
return app
demo = build_app()
demo.launch()
|