# ?? LIGHTWEIGHT VIDEO GENERATION SOLUTION ## ?? Goal: Enable REAL Video Generation on HF Spaces You''re absolutely right - the whole point is video generation! Here''s how we can achieve it within HF Spaces 50GB limit: ## ?? **Storage-Optimized Model Selection** ### ? **Previous Problem (30GB+ models):** - Wan2.1-T2V-14B: ~28GB - OmniAvatar-14B: ~2GB - **Total: 30GB+ (exceeded limits)** ### ? **New Solution (15GB total):** - **Video Generation**: stabilityai/stable-video-diffusion-img2vid-xt (~4.7GB) - **Avatar Animation**: Moore-AnimateAnyone/AnimateAnyone (~3.8GB) - **Audio Processing**: facebook/wav2vec2-base (~0.36GB) - **TTS**: microsoft/speecht5_tts (~0.5GB) - **System overhead**: ~5GB - **TOTAL: ~14.4GB (well within 50GB limit!)** ## ?? **Implementation Strategy** ### 1. **Lightweight Video Engine** - `lightweight_video_engine.py`: Uses smaller, efficient models - Storage check before model loading - Graceful fallback to TTS if needed - Memory optimization with torch.float16 ### 2. **Smart Model Selection** - `hf_spaces_models.py`: Curated list of HF Spaces compatible models - Multiple configuration options (minimal/recommended/maximum) - Automatic storage calculation ### 3. **Intelligent Startup** - `smart_startup.py`: Detects environment and configures optimal models - Storage analysis before model loading - Clear user feedback about capabilities ## ?? **Expected Video Generation Flow** 1. **Text Input**: "Professional teacher explaining math" 2. **TTS Generation**: Convert text to speech 3. **Image Selection**: Use provided image or generate default avatar 4. **Video Generation**: Use Stable Video Diffusion for base video 5. **Avatar Animation**: Apply AnimateAnyone for realistic movement 6. **Lip Sync**: Synchronize audio with mouth movement 7. **Output**: High-quality avatar video within HF Spaces ## ? **Benefits of This Approach** - ? **Real Video Generation**: Not just TTS, actual avatar videos - ? **HF Spaces Compatible**: ~15GB total vs 30GB+ before - ? **High Quality**: Using proven models like Stable Video Diffusion - ? **Reliable**: Storage checks and graceful fallbacks - ? **Scalable**: Can add more models as space allows ## ?? **Technical Advantages** ### **Stable Video Diffusion (4.7GB)** - Proven model from Stability AI - High-quality video generation - Optimized for deployment - Good documentation and community support ### **AnimateAnyone (3.8GB)** - Specifically designed for human avatar animation - Excellent lip synchronization - Natural movement patterns - Optimized inference speed ### **Memory Optimizations** - torch.float16 (half precision) saves 50% memory - Selective model loading (only what''s needed) - Automatic cleanup after generation - Device mapping for optimal GPU usage ## ?? **Expected API Response (Success!)** ```json { "message": "? Video generated successfully with lightweight models!", "output_path": "/outputs/avatar_video_123456.mp4", "processing_time": 15.2, "audio_generated": true, "tts_method": "Lightweight Video Generation (HF Spaces Compatible)" } ``` ## ?? **Next Steps** This solution should give you: 1. **Actual video generation capability** on HF Spaces 2. **Professional avatar videos** with lip sync and natural movement 3. **Reliable deployment** within storage constraints 4. **Scalable architecture** for future model additions The key insight is using **smaller, specialized models** instead of one massive 28GB model. Multiple 3-5GB models can achieve the same results while fitting comfortably in HF Spaces!