Spaces:
Building
Building
File size: 2,686 Bytes
54015b3 abdfcac 54015b3 abdfcac 54015b3 abdfcac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
title: Pose Estimation MediaPipe
emoji: π§
colorFrom: purple
colorTo: gray
sdk: gradio
sdk_version: 5.49.1
app_file: app.py
pinned: false
license: mit
short_description: Pose Estimation App for Human Movement
---
<h1 align="center">π― Pose Estimation - MediaPipe (CPU Optimized)</h1>
<center>
A lightweight Gradio web app for performing human pose estimation using [MediaPipe].
Optimized for CPU-only environments.
</center>
---
## β οΈ Important Warnings
- β οΈ **Maximum video size:** 5 MB (due to CPU processing limits).
- β οΈ **Processing time:** Long videos may take several minutes to process.
---
## π§ Description
This project provides an easy-to-use interface to run human pose estimation on videos.
It uses **MediaPipe Pose** to detect and visualize human body landmarks frame by frame.
You can choose between:
1. **Pose on original video** β overlays pose landmarks directly on the original video.
2. **Pose only (black background)** β displays only the pose skeleton on a dark background.
---
## βοΈ Parameters
| Parameter | Description |
|------------|--------------|
| **min_detection_confidence** | Minimum confidence threshold for the model to detect a pose. |
| **min_tracking_confidence** | Minimum confidence for the model to track poses across frames. |
Both values range from **0.0 to 1.0**.
Higher values increase accuracy but may slow down performance on CPU.
---
## π§© Project Structure
```
π Projects_Repository/
βββ pose_estimation_app.py # Main Gradio app
βββ requirements.txt # Python dependencies
βββ README.md # Project documentation
```
---
## π§βπ» Tech Stack
- [**MediaPipe Pose**](https://mediapipe.dev/) β Pose detection and tracking
- [**OpenCV**](https://opencv.org/) β Video processing and frame manipulation
- [**NumPy**](https://numpy.org/) β Array and numerical operations
- [**Gradio**](https://www.gradio.app/) β Web-based user interface
---
## π§ Notes
- The app is **CPU-only**, optimized for lightweight use.
- For GPU acceleration, consider using TensorFlow or PyTorch-based pose models.
- Works best with short videos and well-lit subjects.
---
## π Visit the Repository
π [GitHub: 1-echo / Projects_Repository](https://github.com/1-echo/Projects_Repository)
---
## πͺͺ License
This project is released under the **MIT License**.
You are free to use, modify, and distribute it with attribution.
---
## π Acknowledgements
- [MediaPipe by Google](https://mediapipe.dev/)
- [Gradio](https://www.gradio.app/)
- [OpenCV](https://opencv.org/)
- [NumPy](https://numpy.org/) |