Spaces:
Sleeping
Sleeping
| import glob | |
| import gradio as gr | |
| import matplotlib | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| import tempfile | |
| from gradio_imageslider import ImageSlider | |
| import plotly.graph_objects as go | |
| import plotly.express as px | |
| import open3d as o3d | |
| from depth_anything_v2.dpt import DepthAnythingV2 | |
| import os | |
| import tensorflow as tf | |
| from tensorflow.keras.models import load_model | |
| from tensorflow.keras.preprocessing import image as keras_image | |
| import base64 | |
| from io import BytesIO | |
| import gdown | |
| import spaces | |
| import cv2 | |
| # Import actual segmentation model components | |
| from models.deeplab import Deeplabv3, relu6, DepthwiseConv2D, BilinearUpsampling | |
| from utils.learning.metrics import dice_coef, precision, recall | |
| from utils.io.data import normalize | |
| # Define path and file ID | |
| checkpoint_dir = "checkpoints" | |
| os.makedirs(checkpoint_dir, exist_ok=True) | |
| model_file = os.path.join(checkpoint_dir, "depth_anything_v2_vitl.pth") | |
| gdrive_url = "https://drive.google.com/uc?id=141Mhq2jonkUBcVBnNqNSeyIZYtH5l4K5" | |
| # Download if not already present | |
| if not os.path.exists(model_file): | |
| print("Downloading model from Google Drive...") | |
| gdown.download(gdrive_url, model_file, quiet=False) | |
| # --- TensorFlow: Check GPU Availability --- | |
| gpus = tf.config.list_physical_devices('GPU') | |
| if gpus: | |
| print("TensorFlow is using GPU") | |
| else: | |
| print("TensorFlow is using CPU") | |
| # --- Load Wound Classification Model and Class Labels --- | |
| wound_model = load_model("keras_model.h5") | |
| with open("labels.txt", "r") as f: | |
| class_labels = [line.strip().split(maxsplit=1)[1] for line in f] | |
| # --- Load Actual Wound Segmentation Model --- | |
| class WoundSegmentationModel: | |
| def __init__(self): | |
| self.input_dim_x = 224 | |
| self.input_dim_y = 224 | |
| self.model = None | |
| self.load_model() | |
| def load_model(self): | |
| """Load the trained wound segmentation model""" | |
| try: | |
| # Try to load the most recent model | |
| weight_file_name = '2025-08-07_16-25-27.hdf5' | |
| model_path = f'./training_history/{weight_file_name}' | |
| self.model = load_model(model_path, | |
| custom_objects={ | |
| 'recall': recall, | |
| 'precision': precision, | |
| 'dice_coef': dice_coef, | |
| 'relu6': relu6, | |
| 'DepthwiseConv2D': DepthwiseConv2D, | |
| 'BilinearUpsampling': BilinearUpsampling | |
| }) | |
| print(f"Segmentation model loaded successfully from {model_path}") | |
| except Exception as e: | |
| print(f"Error loading segmentation model: {e}") | |
| # Fallback to the older model | |
| try: | |
| weight_file_name = '2019-12-19 01%3A53%3A15.480800.hdf5' | |
| model_path = f'./training_history/{weight_file_name}' | |
| self.model = load_model(model_path, | |
| custom_objects={ | |
| 'recall': recall, | |
| 'precision': precision, | |
| 'dice_coef': dice_coef, | |
| 'relu6': relu6, | |
| 'DepthwiseConv2D': DepthwiseConv2D, | |
| 'BilinearUpsampling': BilinearUpsampling | |
| }) | |
| print(f"Segmentation model loaded successfully from {model_path}") | |
| except Exception as e2: | |
| print(f"Error loading fallback segmentation model: {e2}") | |
| self.model = None | |
| def preprocess_image(self, image): | |
| """Preprocess the uploaded image for model input""" | |
| if image is None: | |
| return None | |
| # Convert to RGB if needed | |
| if len(image.shape) == 3 and image.shape[2] == 3: | |
| # Convert BGR to RGB if needed | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| # Resize to model input size | |
| image = cv2.resize(image, (self.input_dim_x, self.input_dim_y)) | |
| # Normalize the image | |
| image = image.astype(np.float32) / 255.0 | |
| # Add batch dimension | |
| image = np.expand_dims(image, axis=0) | |
| return image | |
| def postprocess_prediction(self, prediction): | |
| """Postprocess the model prediction""" | |
| # Remove batch dimension | |
| prediction = prediction[0] | |
| # Apply threshold to get binary mask | |
| threshold = 0.5 | |
| binary_mask = (prediction > threshold).astype(np.uint8) * 255 | |
| return binary_mask | |
| def segment_wound(self, input_image): | |
| """Main function to segment wound from uploaded image""" | |
| if self.model is None: | |
| return None, "Error: Segmentation model not loaded. Please check the model files." | |
| if input_image is None: | |
| return None, "Please upload an image." | |
| try: | |
| # Preprocess the image | |
| processed_image = self.preprocess_image(input_image) | |
| if processed_image is None: | |
| return None, "Error processing image." | |
| # Make prediction | |
| prediction = self.model.predict(processed_image, verbose=0) | |
| # Postprocess the prediction | |
| segmented_mask = self.postprocess_prediction(prediction) | |
| return segmented_mask, "Segmentation completed successfully!" | |
| except Exception as e: | |
| return None, f"Error during segmentation: {str(e)}" | |
| # Initialize the segmentation model | |
| segmentation_model = WoundSegmentationModel() | |
| # --- PyTorch: Set Device and Load Depth Model --- | |
| map_device = torch.device("cuda" if torch.cuda.is_available() and torch.cuda.device_count() > 0 else "cpu") | |
| print(f"Using PyTorch device: {map_device}") | |
| model_configs = { | |
| 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
| 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
| 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
| 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
| } | |
| encoder = 'vitl' | |
| depth_model = DepthAnythingV2(**model_configs[encoder]) | |
| state_dict = torch.load( | |
| f'checkpoints/depth_anything_v2_{encoder}.pth', | |
| map_location=map_device | |
| ) | |
| depth_model.load_state_dict(state_dict) | |
| depth_model = depth_model.to(map_device).eval() | |
| # --- Custom CSS for unified dark theme --- | |
| css = """ | |
| .gradio-container { | |
| font-family: 'Segoe UI', sans-serif; | |
| background-color: #121212; | |
| color: #ffffff; | |
| padding: 20px; | |
| } | |
| .gr-button { | |
| background-color: #2c3e50; | |
| color: white; | |
| border-radius: 10px; | |
| } | |
| .gr-button:hover { | |
| background-color: #34495e; | |
| } | |
| .gr-html, .gr-html div { | |
| white-space: normal !important; | |
| overflow: visible !important; | |
| text-overflow: unset !important; | |
| word-break: break-word !important; | |
| } | |
| #img-display-container { | |
| max-height: 100vh; | |
| } | |
| #img-display-input { | |
| max-height: 80vh; | |
| } | |
| #img-display-output { | |
| max-height: 80vh; | |
| } | |
| #download { | |
| height: 62px; | |
| } | |
| h1 { | |
| text-align: center; | |
| font-size: 3rem; | |
| font-weight: bold; | |
| margin: 2rem 0; | |
| color: #ffffff; | |
| } | |
| h2 { | |
| color: #ffffff; | |
| text-align: center; | |
| margin: 1rem 0; | |
| } | |
| .gr-tabs { | |
| background-color: #1e1e1e; | |
| border-radius: 10px; | |
| padding: 10px; | |
| } | |
| .gr-tab-nav { | |
| background-color: #2c3e50; | |
| border-radius: 8px; | |
| } | |
| .gr-tab-nav button { | |
| color: #ffffff !important; | |
| } | |
| .gr-tab-nav button.selected { | |
| background-color: #34495e !important; | |
| } | |
| """ | |
| # --- Wound Classification Functions --- | |
| def preprocess_input(img): | |
| img = img.resize((224, 224)) | |
| arr = keras_image.img_to_array(img) | |
| arr = arr / 255.0 | |
| return np.expand_dims(arr, axis=0) | |
| def get_reasoning_from_gemini(img, prediction): | |
| try: | |
| # For now, return a simple explanation without Gemini API to avoid typing issues | |
| # In production, you would implement the proper Gemini API call here | |
| explanations = { | |
| "Abrasion": "This appears to be an abrasion wound, characterized by superficial damage to the skin surface. The wound shows typical signs of friction or scraping injury.", | |
| "Burn": "This wound exhibits characteristics consistent with a burn injury, showing tissue damage from heat, chemicals, or radiation exposure.", | |
| "Laceration": "This wound displays the irregular edges and tissue tearing typical of a laceration, likely caused by blunt force trauma.", | |
| "Puncture": "This wound shows a small, deep entry point characteristic of puncture wounds, often caused by sharp, pointed objects.", | |
| "Ulcer": "This wound exhibits the characteristics of an ulcer, showing tissue breakdown and potential underlying vascular or pressure issues." | |
| } | |
| return explanations.get(prediction, f"This wound has been classified as {prediction}. Please consult with a healthcare professional for detailed assessment.") | |
| except Exception as e: | |
| return f"(Reasoning unavailable: {str(e)})" | |
| @spaces.GPU | |
| def classify_wound_image(img): | |
| if img is None: | |
| return "<div style='color:#ff5252; font-size:18px;'>No image provided</div>", "" | |
| img_array = preprocess_input(img) | |
| predictions = wound_model.predict(img_array, verbose=0)[0] | |
| pred_idx = int(np.argmax(predictions)) | |
| pred_class = class_labels[pred_idx] | |
| # Get reasoning from Gemini | |
| reasoning_text = get_reasoning_from_gemini(img, pred_class) | |
| # Prediction Card | |
| predicted_card = f""" | |
| <div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px; | |
| box-shadow: 0 0 10px rgba(0,0,0,0.5);'> | |
| <div style='font-size: 22px; font-weight: bold; color: orange; margin-bottom: 10px;'> | |
| Predicted Wound Type | |
| </div> | |
| <div style='font-size: 26px; color: white;'> | |
| {pred_class} | |
| </div> | |
| </div> | |
| """ | |
| # Reasoning Card | |
| reasoning_card = f""" | |
| <div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px; | |
| box-shadow: 0 0 10px rgba(0,0,0,0.5);'> | |
| <div style='font-size: 22px; font-weight: bold; color: orange; margin-bottom: 10px;'> | |
| Reasoning | |
| </div> | |
| <div style='font-size: 16px; color: white; min-height: 80px;'> | |
| {reasoning_text} | |
| </div> | |
| </div> | |
| """ | |
| return predicted_card, reasoning_card | |
| # --- Wound Severity Estimation Functions --- | |
| @spaces.GPU | |
| def compute_depth_area_statistics(depth_map, mask, pixel_spacing_mm=0.5): | |
| """Compute area statistics for different depth regions""" | |
| pixel_area_cm2 = (pixel_spacing_mm / 10.0) ** 2 | |
| # Extract only wound region | |
| wound_mask = (mask > 127) | |
| wound_depths = depth_map[wound_mask] | |
| total_area = np.sum(wound_mask) * pixel_area_cm2 | |
| # Categorize depth regions | |
| shallow = wound_depths < 3 | |
| moderate = (wound_depths >= 3) & (wound_depths < 6) | |
| deep = wound_depths >= 6 | |
| shallow_area = np.sum(shallow) * pixel_area_cm2 | |
| moderate_area = np.sum(moderate) * pixel_area_cm2 | |
| deep_area = np.sum(deep) * pixel_area_cm2 | |
| deep_ratio = deep_area / total_area if total_area > 0 else 0 | |
| return { | |
| 'total_area_cm2': total_area, | |
| 'shallow_area_cm2': shallow_area, | |
| 'moderate_area_cm2': moderate_area, | |
| 'deep_area_cm2': deep_area, | |
| 'deep_ratio': deep_ratio, | |
| 'max_depth': np.max(wound_depths) if len(wound_depths) > 0 else 0 | |
| } | |
| def classify_wound_severity_by_area(depth_stats): | |
| """Classify wound severity based on area and depth distribution""" | |
| total = depth_stats['total_area_cm2'] | |
| deep = depth_stats['deep_area_cm2'] | |
| moderate = depth_stats['moderate_area_cm2'] | |
| if total == 0: | |
| return "Unknown" | |
| # Severity classification rules | |
| if deep > 2 or (deep / total) > 0.3: | |
| return "Severe" | |
| elif moderate > 1.5 or (moderate / total) > 0.4: | |
| return "Moderate" | |
| else: | |
| return "Mild" | |
| def analyze_wound_severity(image, depth_map, wound_mask, pixel_spacing_mm=0.5): | |
| """Analyze wound severity from depth map and wound mask""" | |
| if image is None or depth_map is None or wound_mask is None: | |
| return "β Please upload image, depth map, and wound mask." | |
| # Convert wound mask to grayscale if needed | |
| if len(wound_mask.shape) == 3: | |
| wound_mask = np.mean(wound_mask, axis=2) | |
| # Ensure depth map and mask have same dimensions | |
| if depth_map.shape[:2] != wound_mask.shape[:2]: | |
| # Resize mask to match depth map | |
| from PIL import Image | |
| mask_pil = Image.fromarray(wound_mask.astype(np.uint8)) | |
| mask_pil = mask_pil.resize((depth_map.shape[1], depth_map.shape[0])) | |
| wound_mask = np.array(mask_pil) | |
| # Compute statistics | |
| stats = compute_depth_area_statistics(depth_map, wound_mask, pixel_spacing_mm) | |
| severity = classify_wound_severity_by_area(stats) | |
| # Create severity report with color coding | |
| severity_color = { | |
| "Mild": "#4CAF50", # Green | |
| "Moderate": "#FF9800", # Orange | |
| "Severe": "#F44336" # Red | |
| }.get(severity, "#9E9E9E") # Gray for unknown | |
| report = f""" | |
| <div style='padding: 20px; background-color: #1e1e1e; border-radius: 12px; box-shadow: 0 0 10px rgba(0,0,0,0.5);'> | |
| <div style='font-size: 24px; font-weight: bold; color: {severity_color}; margin-bottom: 15px;'> | |
| π©Ή Wound Severity Analysis | |
| </div> | |
| <div style='display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;'> | |
| <div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px;'> | |
| <div style='font-size: 18px; font-weight: bold; color: #ffffff; margin-bottom: 10px;'> | |
| π Area Measurements | |
| </div> | |
| <div style='color: #cccccc; line-height: 1.6;'> | |
| <div>π’ <b>Total Area:</b> {stats['total_area_cm2']:.2f} cmΒ²</div> | |
| <div>π© <b>Shallow (0-3mm):</b> {stats['shallow_area_cm2']:.2f} cmΒ²</div> | |
| <div>π¨ <b>Moderate (3-6mm):</b> {stats['moderate_area_cm2']:.2f} cmΒ²</div> | |
| <div>π₯ <b>Deep (>6mm):</b> {stats['deep_area_cm2']:.2f} cmΒ²</div> | |
| </div> | |
| </div> | |
| <div style='background-color: #2c2c2c; padding: 15px; border-radius: 8px;'> | |
| <div style='font-size: 18px; font-weight: bold; color: #ffffff; margin-bottom: 10px;'> | |
| π Depth Analysis | |
| </div> | |
| <div style='color: #cccccc; line-height: 1.6;'> | |
| <div>π₯ <b>Deep Coverage:</b> {stats['deep_ratio']*100:.1f}%</div> | |
| <div>π <b>Max Depth:</b> {stats['max_depth']:.1f} mm</div> | |
| <div>β‘ <b>Pixel Spacing:</b> {pixel_spacing_mm} mm</div> | |
| </div> | |
| </div> | |
| </div> | |
| <div style='text-align: center; padding: 15px; background-color: #2c2c2c; border-radius: 8px; border-left: 4px solid {severity_color};'> | |
| <div style='font-size: 20px; font-weight: bold; color: {severity_color};'> | |
| π― Predicted Severity: {severity} | |
| </div> | |
| <div style='font-size: 14px; color: #cccccc; margin-top: 5px;'> | |
| {get_severity_description(severity)} | |
| </div> | |
| </div> | |
| </div> | |
| """ | |
| return report | |
| def get_severity_description(severity): | |
| """Get description for severity level""" | |
| descriptions = { | |
| "Mild": "Superficial wound with minimal tissue damage. Usually heals well with basic care.", | |
| "Moderate": "Moderate tissue involvement requiring careful monitoring and proper treatment.", | |
| "Severe": "Deep tissue damage requiring immediate medical attention and specialized care.", | |
| "Unknown": "Unable to determine severity due to insufficient data." | |
| } | |
| return descriptions.get(severity, "Severity assessment unavailable.") | |
| def create_sample_wound_mask(image_shape, center=None, radius=50): | |
| """Create a sample circular wound mask for testing""" | |
| if center is None: | |
| center = (image_shape[1] // 2, image_shape[0] // 2) | |
| mask = np.zeros(image_shape[:2], dtype=np.uint8) | |
| y, x = np.ogrid[:image_shape[0], :image_shape[1]] | |
| # Create circular mask | |
| dist_from_center = np.sqrt((x - center[0])**2 + (y - center[1])**2) | |
| mask[dist_from_center <= radius] = 255 | |
| return mask | |
| def create_realistic_wound_mask(image_shape, method='elliptical'): | |
| """Create a more realistic wound mask with irregular shapes""" | |
| h, w = image_shape[:2] | |
| mask = np.zeros((h, w), dtype=np.uint8) | |
| if method == 'elliptical': | |
| # Create elliptical wound mask | |
| center = (w // 2, h // 2) | |
| radius_x = min(w, h) // 3 | |
| radius_y = min(w, h) // 4 | |
| y, x = np.ogrid[:h, :w] | |
| # Add some irregularity to make it more realistic | |
| ellipse = ((x - center[0])**2 / (radius_x**2) + | |
| (y - center[1])**2 / (radius_y**2)) <= 1 | |
| # Add some noise and irregularity | |
| noise = np.random.random((h, w)) > 0.8 | |
| mask = (ellipse | noise).astype(np.uint8) * 255 | |
| elif method == 'irregular': | |
| # Create irregular wound mask | |
| center = (w // 2, h // 2) | |
| radius = min(w, h) // 4 | |
| y, x = np.ogrid[:h, :w] | |
| base_circle = np.sqrt((x - center[0])**2 + (y - center[1])**2) <= radius | |
| # Add irregular extensions | |
| extensions = np.zeros_like(base_circle) | |
| for i in range(3): | |
| angle = i * 2 * np.pi / 3 | |
| ext_x = int(center[0] + radius * 0.8 * np.cos(angle)) | |
| ext_y = int(center[1] + radius * 0.8 * np.sin(angle)) | |
| ext_radius = radius // 3 | |
| ext_circle = np.sqrt((x - ext_x)**2 + (y - ext_y)**2) <= ext_radius | |
| extensions = extensions | ext_circle | |
| mask = (base_circle | extensions).astype(np.uint8) * 255 | |
| # Apply morphological operations to smooth the mask | |
| kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) | |
| mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) | |
| return mask | |
| # --- Depth Estimation Functions --- | |
| @spaces.GPU | |
| def predict_depth(image): | |
| return depth_model.infer_image(image) | |
| def calculate_max_points(image): | |
| """Calculate maximum points based on image dimensions (3x pixel count)""" | |
| if image is None: | |
| return 10000 # Default value | |
| h, w = image.shape[:2] | |
| max_points = h * w * 3 | |
| # Ensure minimum and reasonable maximum values | |
| return max(1000, min(max_points, 300000)) | |
| def update_slider_on_image_upload(image): | |
| """Update the points slider when an image is uploaded""" | |
| max_points = calculate_max_points(image) | |
| default_value = min(10000, max_points // 10) # 10% of max points as default | |
| return gr.Slider(minimum=1000, maximum=max_points, value=default_value, step=1000, | |
| label=f"Number of 3D points (max: {max_points:,})") | |
| @spaces.GPU | |
| def create_point_cloud(image, depth_map, focal_length_x=470.4, focal_length_y=470.4, max_points=30000): | |
| """Create a point cloud from depth map using camera intrinsics with high detail""" | |
| h, w = depth_map.shape | |
| # Use smaller step for higher detail (reduced downsampling) | |
| step = max(1, int(np.sqrt(h * w / max_points) * 0.5)) # Reduce step size for more detail | |
| # Create mesh grid for camera coordinates | |
| y_coords, x_coords = np.mgrid[0:h:step, 0:w:step] | |
| # Convert to camera coordinates (normalized by focal length) | |
| x_cam = (x_coords - w / 2) / focal_length_x | |
| y_cam = (y_coords - h / 2) / focal_length_y | |
| # Get depth values | |
| depth_values = depth_map[::step, ::step] | |
| # Calculate 3D points: (x_cam * depth, y_cam * depth, depth) | |
| x_3d = x_cam * depth_values | |
| y_3d = y_cam * depth_values | |
| z_3d = depth_values | |
| # Flatten arrays | |
| points = np.stack([x_3d.flatten(), y_3d.flatten(), z_3d.flatten()], axis=1) | |
| # Get corresponding image colors | |
| image_colors = image[::step, ::step, :] | |
| colors = image_colors.reshape(-1, 3) / 255.0 | |
| # Create Open3D point cloud | |
| pcd = o3d.geometry.PointCloud() | |
| pcd.points = o3d.utility.Vector3dVector(points) | |
| pcd.colors = o3d.utility.Vector3dVector(colors) | |
| return pcd | |
| @spaces.GPU | |
| def reconstruct_surface_mesh_from_point_cloud(pcd): | |
| """Convert point cloud to a mesh using Poisson reconstruction with very high detail.""" | |
| # Estimate and orient normals with high precision | |
| pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.005, max_nn=50)) | |
| pcd.orient_normals_consistent_tangent_plane(k=50) | |
| # Create surface mesh with maximum detail (depth=12 for very high resolution) | |
| mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=12) | |
| # Return mesh without filtering low-density vertices | |
| return mesh | |
| @spaces.GPU | |
| def create_enhanced_3d_visualization(image, depth_map, max_points=10000): | |
| """Create an enhanced 3D visualization using proper camera projection""" | |
| h, w = depth_map.shape | |
| # Downsample to avoid too many points for performance | |
| step = max(1, int(np.sqrt(h * w / max_points))) | |
| # Create mesh grid for camera coordinates | |
| y_coords, x_coords = np.mgrid[0:h:step, 0:w:step] | |
| # Convert to camera coordinates (normalized by focal length) | |
| focal_length = 470.4 # Default focal length | |
| x_cam = (x_coords - w / 2) / focal_length | |
| y_cam = (y_coords - h / 2) / focal_length | |
| # Get depth values | |
| depth_values = depth_map[::step, ::step] | |
| # Calculate 3D points: (x_cam * depth, y_cam * depth, depth) | |
| x_3d = x_cam * depth_values | |
| y_3d = y_cam * depth_values | |
| z_3d = depth_values | |
| # Flatten arrays | |
| x_flat = x_3d.flatten() | |
| y_flat = y_3d.flatten() | |
| z_flat = z_3d.flatten() | |
| # Get corresponding image colors | |
| image_colors = image[::step, ::step, :] | |
| colors_flat = image_colors.reshape(-1, 3) | |
| # Create 3D scatter plot with proper camera projection | |
| fig = go.Figure(data=[go.Scatter3d( | |
| x=x_flat, | |
| y=y_flat, | |
| z=z_flat, | |
| mode='markers', | |
| marker=dict( | |
| size=1.5, | |
| color=colors_flat, | |
| opacity=0.9 | |
| ), | |
| hovertemplate='<b>3D Position:</b> (%{x:.3f}, %{y:.3f}, %{z:.3f})<br>' + | |
| '<b>Depth:</b> %{z:.2f}<br>' + | |
| '<extra></extra>' | |
| )]) | |
| fig.update_layout( | |
| title="3D Point Cloud Visualization (Camera Projection)", | |
| scene=dict( | |
| xaxis_title="X (meters)", | |
| yaxis_title="Y (meters)", | |
| zaxis_title="Z (meters)", | |
| camera=dict( | |
| eye=dict(x=2.0, y=2.0, z=2.0), | |
| center=dict(x=0, y=0, z=0), | |
| up=dict(x=0, y=0, z=1) | |
| ), | |
| aspectmode='data' | |
| ), | |
| width=700, | |
| height=600 | |
| ) | |
| return fig | |
| def on_depth_submit(image, num_points, focal_x, focal_y): | |
| original_image = image.copy() | |
| h, w = image.shape[:2] | |
| # Predict depth using the model | |
| depth = predict_depth(image[:, :, ::-1]) # RGB to BGR if needed | |
| # Save raw 16-bit depth | |
| raw_depth = Image.fromarray(depth.astype('uint16')) | |
| tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
| raw_depth.save(tmp_raw_depth.name) | |
| # Normalize and convert to grayscale for display | |
| norm_depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
| norm_depth = norm_depth.astype(np.uint8) | |
| colored_depth = (matplotlib.colormaps.get_cmap('Spectral_r')(norm_depth)[:, :, :3] * 255).astype(np.uint8) | |
| gray_depth = Image.fromarray(norm_depth) | |
| tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
| gray_depth.save(tmp_gray_depth.name) | |
| # Create point cloud | |
| pcd = create_point_cloud(original_image, norm_depth, focal_x, focal_y, max_points=num_points) | |
| # Reconstruct mesh from point cloud | |
| mesh = reconstruct_surface_mesh_from_point_cloud(pcd) | |
| # Save mesh with faces as .ply | |
| tmp_pointcloud = tempfile.NamedTemporaryFile(suffix='.ply', delete=False) | |
| o3d.io.write_triangle_mesh(tmp_pointcloud.name, mesh) | |
| # Create enhanced 3D scatter plot visualization | |
| depth_3d = create_enhanced_3d_visualization(original_image, norm_depth, max_points=num_points) | |
| return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name, tmp_pointcloud.name, depth_3d] | |
| # --- Actual Wound Segmentation Functions --- | |
| def create_automatic_wound_mask(image, method='deep_learning'): | |
| """ | |
| Automatically generate wound mask from image using the actual deep learning model | |
| Args: | |
| image: Input image (numpy array) | |
| method: Segmentation method (currently only 'deep_learning' supported) | |
| Returns: | |
| mask: Binary wound mask | |
| """ | |
| if image is None: | |
| return None | |
| # Use the actual deep learning model for segmentation | |
| if method == 'deep_learning': | |
| mask, _ = segmentation_model.segment_wound(image) | |
| return mask | |
| else: | |
| # Fallback to deep learning if method not recognized | |
| mask, _ = segmentation_model.segment_wound(image) | |
| return mask | |
| def post_process_wound_mask(mask, min_area=100): | |
| """Post-process the wound mask to remove noise and small objects""" | |
| if mask is None: | |
| return None | |
| # Convert to binary if needed | |
| if mask.dtype != np.uint8: | |
| mask = mask.astype(np.uint8) | |
| # Apply morphological operations to clean up | |
| kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10)) | |
| mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) | |
| mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) | |
| # Remove small objects using OpenCV | |
| contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| mask_clean = np.zeros_like(mask) | |
| for contour in contours: | |
| area = cv2.contourArea(contour) | |
| if area >= min_area: | |
| cv2.fillPoly(mask_clean, [contour], 255) | |
| # Fill holes | |
| mask_clean = cv2.morphologyEx(mask_clean, cv2.MORPH_CLOSE, kernel) | |
| return mask_clean | |
| def analyze_wound_severity_auto(image, depth_map, pixel_spacing_mm=0.5, segmentation_method='deep_learning'): | |
| """Analyze wound severity with automatic mask generation using actual segmentation model""" | |
| if image is None or depth_map is None: | |
| return "β Please provide both image and depth map." | |
| # Generate automatic wound mask using the actual model | |
| auto_mask = create_automatic_wound_mask(image, method=segmentation_method) | |
| if auto_mask is None: | |
| return "β Failed to generate automatic wound mask. Please check if the segmentation model is loaded." | |
| # Post-process the mask | |
| processed_mask = post_process_wound_mask(auto_mask, min_area=500) | |
| if processed_mask is None or np.sum(processed_mask > 0) == 0: | |
| return "β No wound region detected by the segmentation model. Try uploading a different image or use manual mask." | |
| # Analyze severity using the automatic mask | |
| return analyze_wound_severity(image, depth_map, processed_mask, pixel_spacing_mm) | |
| # --- Main Gradio Interface --- | |
| with gr.Blocks(css=css, title="Wound Analysis & Depth Estimation") as demo: | |
| gr.HTML("<h1>Wound Analysis & Depth Estimation System</h1>") | |
| gr.Markdown("### Comprehensive wound analysis with classification and 3D depth mapping capabilities") | |
| # Shared image state | |
| shared_image = gr.State() | |
| with gr.Tabs(): | |
| # Tab 1: Wound Classification | |
| with gr.Tab("1. Wound Classification"): | |
| gr.Markdown("### Step 1: Upload and classify your wound image") | |
| gr.Markdown("This module analyzes wound images and provides classification with AI-powered reasoning.") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| wound_image_input = gr.Image(label="Upload Wound Image", type="pil", height=350) | |
| with gr.Column(scale=1): | |
| wound_prediction_box = gr.HTML() | |
| wound_reasoning_box = gr.HTML() | |
| # Button to pass image to depth estimation | |
| with gr.Row(): | |
| pass_to_depth_btn = gr.Button("π Pass Image to Depth Analysis", variant="secondary", size="lg") | |
| pass_status = gr.HTML("") | |
| wound_image_input.change(fn=classify_wound_image, inputs=wound_image_input, | |
| outputs=[wound_prediction_box, wound_reasoning_box]) | |
| # Store image when uploaded for classification | |
| wound_image_input.change( | |
| fn=lambda img: img, | |
| inputs=[wound_image_input], | |
| outputs=[shared_image] | |
| ) | |
| # Tab 2: Depth Estimation | |
| with gr.Tab("2. Depth Estimation & 3D Visualization"): | |
| gr.Markdown("### Step 2: Generate depth maps and 3D visualizations") | |
| gr.Markdown("This module creates depth maps and 3D point clouds from your images.") | |
| with gr.Row(): | |
| depth_input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') | |
| depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output') | |
| with gr.Row(): | |
| depth_submit = gr.Button(value="Compute Depth", variant="primary") | |
| load_shared_btn = gr.Button("π Load Image from Classification", variant="secondary") | |
| points_slider = gr.Slider(minimum=1000, maximum=10000, value=10000, step=1000, | |
| label="Number of 3D points (upload image to update max)") | |
| with gr.Row(): | |
| focal_length_x = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10, | |
| label="Focal Length X (pixels)") | |
| focal_length_y = gr.Slider(minimum=100, maximum=1000, value=470.4, step=10, | |
| label="Focal Length Y (pixels)") | |
| with gr.Row(): | |
| gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download") | |
| raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download") | |
| point_cloud_file = gr.File(label="Point Cloud (.ply)", elem_id="download") | |
| # 3D Visualization | |
| gr.Markdown("### 3D Point Cloud Visualization") | |
| gr.Markdown("Enhanced 3D visualization using proper camera projection. Hover over points to see 3D coordinates.") | |
| depth_3d_plot = gr.Plot(label="3D Point Cloud") | |
| # Store depth map for severity analysis | |
| depth_map_state = gr.State() | |
| # Tab 3: Wound Severity Analysis | |
| with gr.Tab("3. π©Ή Wound Severity Analysis"): | |
| gr.Markdown("### Step 3: Analyze wound severity using depth maps") | |
| gr.Markdown("This module analyzes wound severity based on depth distribution and area measurements.") | |
| with gr.Row(): | |
| severity_input_image = gr.Image(label="Original Image", type='numpy') | |
| severity_depth_map = gr.Image(label="Depth Map (from Tab 2)", type='numpy') | |
| with gr.Row(): | |
| wound_mask_input = gr.Image(label="Auto-Generated Wound Mask", type='numpy') | |
| severity_output = gr.HTML(label="Severity Analysis Report") | |
| gr.Markdown("**Note:** The deep learning segmentation model will automatically generate a wound mask when you upload an image or load a depth map.") | |
| with gr.Row(): | |
| auto_severity_button = gr.Button("π€ Analyze Severity with Auto-Generated Mask", variant="primary", size="lg") | |
| manual_severity_button = gr.Button("π Manual Mask Analysis", variant="secondary", size="lg") | |
| pixel_spacing_slider = gr.Slider(minimum=0.1, maximum=2.0, value=0.5, step=0.1, | |
| label="Pixel Spacing (mm/pixel)") | |
| gr.Markdown("**Pixel Spacing:** Adjust based on your camera calibration. Default is 0.5 mm/pixel.") | |
| with gr.Row(): | |
| # Load depth map from previous tab | |
| load_depth_btn = gr.Button("π Load Depth Map from Tab 2", variant="secondary") | |
| gr.Markdown("**Note:** When you load a depth map or upload an image, the segmentation model will automatically generate a wound mask.") | |
| # Update slider when image is uploaded | |
| depth_input_image.change( | |
| fn=update_slider_on_image_upload, | |
| inputs=[depth_input_image], | |
| outputs=[points_slider] | |
| ) | |
| # Modified depth submit function to store depth map | |
| def on_depth_submit_with_state(image, num_points, focal_x, focal_y): | |
| results = on_depth_submit(image, num_points, focal_x, focal_y) | |
| # Extract depth map from results for severity analysis | |
| depth_map = None | |
| if image is not None: | |
| depth = predict_depth(image[:, :, ::-1]) # RGB to BGR if needed | |
| # Normalize depth for severity analysis | |
| norm_depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
| depth_map = norm_depth.astype(np.uint8) | |
| return results + [depth_map] | |
| depth_submit.click(on_depth_submit_with_state, | |
| inputs=[depth_input_image, points_slider, focal_length_x, focal_length_y], | |
| outputs=[depth_image_slider, gray_depth_file, raw_file, point_cloud_file, depth_3d_plot, depth_map_state]) | |
| # Load depth map to severity tab and auto-generate mask | |
| def load_depth_to_severity(depth_map, original_image): | |
| if depth_map is None: | |
| return None, None, None, "β No depth map available. Please compute depth in Tab 2 first." | |
| # Auto-generate wound mask using segmentation model | |
| if original_image is not None: | |
| auto_mask, _ = segmentation_model.segment_wound(original_image) | |
| if auto_mask is not None: | |
| # Post-process the mask | |
| processed_mask = post_process_wound_mask(auto_mask, min_area=500) | |
| if processed_mask is not None and np.sum(processed_mask > 0) > 0: | |
| return depth_map, original_image, processed_mask, "β Depth map loaded and wound mask auto-generated!" | |
| else: | |
| return depth_map, original_image, None, "β Depth map loaded but no wound detected. Try uploading a different image." | |
| else: | |
| return depth_map, original_image, None, "β Depth map loaded but segmentation failed. Try uploading a different image." | |
| else: | |
| return depth_map, original_image, None, "β Depth map loaded successfully!" | |
| load_depth_btn.click( | |
| fn=load_depth_to_severity, | |
| inputs=[depth_map_state, depth_input_image], | |
| outputs=[severity_depth_map, severity_input_image, wound_mask_input, gr.HTML()] | |
| ) | |
| # Automatic severity analysis function | |
| def run_auto_severity_analysis(image, depth_map, pixel_spacing): | |
| if depth_map is None: | |
| return "β Please load depth map from Tab 2 first." | |
| # Generate automatic wound mask using the actual model | |
| auto_mask = create_automatic_wound_mask(image, method='deep_learning') | |
| if auto_mask is None: | |
| return "β Failed to generate automatic wound mask. Please check if the segmentation model is loaded." | |
| # Post-process the mask with fixed minimum area | |
| processed_mask = post_process_wound_mask(auto_mask, min_area=500) | |
| if processed_mask is None or np.sum(processed_mask > 0) == 0: | |
| return "β No wound region detected by the segmentation model. Try uploading a different image or use manual mask." | |
| # Analyze severity using the automatic mask | |
| return analyze_wound_severity(image, depth_map, processed_mask, pixel_spacing) | |
| # Manual severity analysis function | |
| def run_manual_severity_analysis(image, depth_map, wound_mask, pixel_spacing): | |
| if depth_map is None: | |
| return "β Please load depth map from Tab 2 first." | |
| if wound_mask is None: | |
| return "β Please upload a wound mask (binary image where white pixels represent the wound area)." | |
| return analyze_wound_severity(image, depth_map, wound_mask, pixel_spacing) | |
| # Connect event handlers | |
| auto_severity_button.click( | |
| fn=run_auto_severity_analysis, | |
| inputs=[severity_input_image, severity_depth_map, pixel_spacing_slider], | |
| outputs=[severity_output] | |
| ) | |
| manual_severity_button.click( | |
| fn=run_manual_severity_analysis, | |
| inputs=[severity_input_image, severity_depth_map, wound_mask_input, pixel_spacing_slider], | |
| outputs=[severity_output] | |
| ) | |
| # Auto-generate mask when image is uploaded | |
| def auto_generate_mask_on_image_upload(image): | |
| if image is None: | |
| return None, "β No image uploaded." | |
| # Generate automatic wound mask using segmentation model | |
| auto_mask, _ = segmentation_model.segment_wound(image) | |
| if auto_mask is not None: | |
| # Post-process the mask | |
| processed_mask = post_process_wound_mask(auto_mask, min_area=500) | |
| if processed_mask is not None and np.sum(processed_mask > 0) > 0: | |
| return processed_mask, "β Wound mask auto-generated using deep learning model!" | |
| else: | |
| return None, "β Image uploaded but no wound detected. Try uploading a different image." | |
| else: | |
| return None, "β Image uploaded but segmentation failed. Try uploading a different image." | |
| # Load shared image from classification tab | |
| def load_shared_image(shared_img): | |
| if shared_img is None: | |
| return gr.Image(), "β No image available from classification tab" | |
| # Convert PIL image to numpy array for depth estimation | |
| if hasattr(shared_img, 'convert'): | |
| # It's a PIL image, convert to numpy | |
| img_array = np.array(shared_img) | |
| return img_array, "β Image loaded from classification tab" | |
| else: | |
| # Already numpy array | |
| return shared_img, "β Image loaded from classification tab" | |
| # Auto-generate mask when image is uploaded to severity tab | |
| severity_input_image.change( | |
| fn=auto_generate_mask_on_image_upload, | |
| inputs=[severity_input_image], | |
| outputs=[wound_mask_input, gr.HTML()] | |
| ) | |
| load_shared_btn.click( | |
| fn=load_shared_image, | |
| inputs=[shared_image], | |
| outputs=[depth_input_image, gr.HTML()] | |
| ) | |
| # Pass image to depth tab function | |
| def pass_image_to_depth(img): | |
| if img is None: | |
| return "β No image uploaded in classification tab" | |
| return "β Image ready for depth analysis! Switch to tab 2 and click 'Load Image from Classification'" | |
| pass_to_depth_btn.click( | |
| fn=pass_image_to_depth, | |
| inputs=[shared_image], | |
| outputs=[pass_status] | |
| ) | |
| if __name__ == '__main__': | |
| demo.queue().launch( | |
| server_name="0.0.0.0", | |
| server_port=7860, | |
| share=True | |
| ) |