test_of_time_accuracy / test_of_time_accuracy.py
aauss's picture
Make sure to sort only list of strings in unsorted_list responses.
c6975d0
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Accuracy metric for the Test of Time benchmark by Bahar et al. (2025)."""
import ast
import json
from typing import Any, Literal
import datasets
import evaluate
_CITATION = """\
@InProceedings{huggingface:module,
title = {Test of Time Accuracy},
authors={Auss Abbood},
year={2025}
}
"""
_DESCRIPTION = """\
The Test of Time (ToT) benchmarks expects models format their answers as a JSON with an explanation field and an answer field that follows a predefined format. The metrics extracts JSONs objects from the model's output, retains only the first JSON, drops the explanation field and compares it with the reference answer.
"""
_KWARGS_DESCRIPTION = """
Compares the extracted answer from the model's output with the reference answer.
Args:
predictions: list of predictions to score. Each prediction should be a string that contains a JSON object (e.g., generated by an LLM).
references: list of reference answers.
subset: The subset of the benchmark being evaluated. Must be one of "arithmetic" or "semantic".
return_average: If True, returns the average accuracy. If False, returns a list of boolean scores (correct/incorrect) for each sample. Defaults to True.
Returns:
accuracy: The accuracy score (0.0 to 1.0) if return_average=True, or a list of booleans indicating correctness per sample if return_average=False.
Examples:
>>> import evaluate
>>> metric = evaluate.load("aauss/test_of_time_accuracy")
>>> predictions = [
... '{"explanation": "Some explanation...", "unordered_list": ["London"]}',
... ' "Response without opening curly brackets...", "answer": "2005-04-07"}',
... ]
>>> references = [
... '{"unordered_list": ["London"]}',
... "{'answer': '2005-04-07'}",
... ]
>>> results = metric.compute(predictions=predictions, references=references, subset="arithmetic")
>>> print(results)
{'accuracy': 0.5}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class TestOfTimeAccuracy(evaluate.Metric):
"""Accuracy metric for the Test of Time benchmark by Bahar et al. (2025)."""
__test__ = False
def _info(self) -> evaluate.MetricInfo:
"""Returns metadata about this metric."""
return evaluate.MetricInfo(
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": datasets.Value("string"),
"references": datasets.Value("string"),
}
),
# Homepage of the module for documentation
# homepage="http://module.homepage",
# Additional links to the codebase or references
# codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
# reference_urls=["http://path.to.reference.url/new_module"],
)
@staticmethod
def _extract_first_json_object(text: str) -> dict | None:
"""
Extract the first valid JSON object from text.
Handles common LLM output issues like unescaped newlines in string
values (LLMs produce human-readable output, not strict JSON).
Args:
text: String that may contain JSON objects
Returns:
The first JSON dictionary found, or None if no valid JSON exists
"""
# Fix unescaped control chars in strings (common LLM issue)
text = TestOfTimeAccuracy._escape_control_chars_in_strings(text)
decoder = json.JSONDecoder()
idx = 0
while idx < len(text):
if text[idx] == '{':
try:
obj, _ = decoder.raw_decode(text, idx)
if isinstance(obj, dict):
return obj
except json.JSONDecodeError:
pass
idx += 1
return None
@staticmethod
def _escape_control_chars_in_strings(text: str) -> str:
"""
Escape literal control characters inside JSON string values.
LLMs produce newlines/tabs for readability, but JSON requires them
to be escaped within strings.
"""
result = []
in_string = False
i = 0
while i < len(text):
char = text[i]
if char == '\\' and in_string and i + 1 < len(text):
# Preserve existing escape sequences
result.append(char)
result.append(text[i + 1])
i += 2
continue
if char == '"':
in_string = not in_string
if in_string and char == '\n':
result.append('\\n')
elif in_string and char == '\r':
result.append('\\r')
elif in_string and char == '\t':
result.append('\\t')
else:
result.append(char)
i += 1
return ''.join(result)
@staticmethod
def _parse_reference_label(label_str: str) -> dict | None:
"""
Parses a reference label string into a dictionary.
Handles Python dict strings (e.g., "{'key': 'value'}") by
evaluating them as literals.
Args:
label_str: String representation of a dictionary
Returns:
Parsed dictionary, or None if parsing fails
"""
try:
return ast.literal_eval(label_str)
except (ValueError, SyntaxError):
return None
@staticmethod
def _remove_explanation_field(data: Any) -> Any:
"""
Removes the 'explanation' field from a dictionary.
Args:
data: Dictionary or other data type
Returns:
The data with explanation field removed (if it was a dict),
or the original data unchanged
"""
if isinstance(data, dict):
data.pop("explanation", None)
return data
@staticmethod
def _extract_answer_field(data: Any) -> Any:
"""
Extracts the 'answer' field from a dictionary.
Args:
data: Dictionary or other data type
Returns:
The value of the 'answer' field if data is a dict,
otherwise returns the data unchanged
"""
if isinstance(data, dict):
return data.get("answer", None)
return data
@staticmethod
def _sort_unordered_list_field(data: Any) -> Any:
"""
Sorts the 'unordered_list' field in a dictionary.
This enables comparison of unordered lists by converting them to
a canonical sorted form.
Args:
data: Dictionary potentially containing an 'unordered_list' field
Returns:
Sorted list if data is a dict with 'unordered_list',
otherwise returns data unchanged
"""
if isinstance(data, dict) and "unordered_list" in data:
return sorted([item for item in data["unordered_list"] if isinstance(item, str)])
return data
@staticmethod
def _cast_prediction_to_reference_types(
reference: dict, prediction: dict
) -> dict | None:
"""
Casts prediction values to match reference types.
Ensures that predictions can be compared with references even when
the types differ (e.g., string "123" vs int 123, int 5 vs float 5.0).
Args:
reference: Reference dictionary with expected types
prediction: Prediction dictionary to cast
Returns:
Dictionary with casted values, or None if casting fails or
prediction is missing required keys
"""
if not isinstance(prediction, dict) or not isinstance(reference, dict):
return None
casted_prediction = {}
try:
for ref_key, ref_value in reference.items():
if ref_key not in prediction:
return None
reference_type = type(ref_value)
pred_value = prediction[ref_key]
# Safeguard: Python allows list("abc") -> ['a', 'b', 'c']
# We don't want to turn strings into character lists
if reference_type is list and not isinstance(pred_value, list):
return None
# Cast to reference type: int("123") -> 123, float(12) -> 12.0, etc.
casted_prediction[ref_key] = reference_type(pred_value)
return casted_prediction
except (ValueError, TypeError):
return None
@staticmethod
def _normalise_list_field_casing(data: dict | None) -> dict | None:
"""
Converts all list items to lowercase for case-insensitive comparison.
Applied to 'ordered_list' and 'unordered_list' fields to handle variations
in capitalization (e.g., "Skating" vs "skating").
Args:
data: Dictionary potentially containing list fields
Returns:
Dictionary with lowercased list items, or None if data is None
"""
if data is None or not isinstance(data, dict):
return data
# Process list fields regardless of key order
for key in ["ordered_list", "unordered_list"]:
if key in data and isinstance(data[key], list):
data[key] = [item.lower() for item in data[key] if isinstance(item, str)]
return data
@staticmethod
def _fix_age_field_conflict(prediction: dict | None) -> dict | None:
"""
Fixes a known conflict in the dataset regarding the 'age' field.
In some dataset samples, the instruction asks for an 'age' field but
the reference uses 'answer'. This method normalises the prediction
to match the expected format.
Args:
prediction: Prediction dictionary potentially with 'age' field
Returns:
Dictionary with 'age' converted to 'answer', or unchanged if
'age' field not present
"""
if prediction is not None and isinstance(prediction, dict):
if "age" in prediction:
prediction = {"answer": prediction["age"]}
return prediction
def _process_arithmetic_prediction(
self, prediction: dict | None, reference: dict | None
) -> tuple[Any, Any]:
"""
Processes a prediction-reference pair for the arithmetic subset.
Applies arithmetic-specific transformations:
1. Fixes age field conflicts
2. normalises list casing
3. Casts prediction types to match reference
4. Sorts unordered lists for comparison
Args:
prediction: Raw prediction dictionary
reference: Raw reference dictionary
Returns:
Tuple of (processed_prediction, processed_reference)
"""
prediction = self._fix_age_field_conflict(prediction)
prediction = self._normalise_list_field_casing(prediction)
reference = self._normalise_list_field_casing(reference)
prediction = self._cast_prediction_to_reference_types(reference, prediction)
# Sort unordered lists for order-independent comparison
if reference and "unordered_list" in reference:
prediction = self._sort_unordered_list_field(prediction)
reference = self._sort_unordered_list_field(reference)
return prediction, reference
def _process_semantic_prediction(
self, prediction: Any, reference: Any
) -> tuple[str, str]:
"""
Processes a prediction-reference pair for the semantic subset.
Converts both to strings for comparison since semantic answers
may have type mismatches (e.g., int in JSON vs string in reference).
Args:
prediction: Raw prediction value
reference: Raw reference value
Returns:
Tuple of (str(prediction), str(reference))
"""
return str(prediction), str(reference)
def _extract_predictions(
self, raw_predictions: list[str], subset: str
) -> list[Any]:
"""
Extracts and preprocesses predictions based on subset type.
Args:
raw_predictions: List of raw prediction strings (e.g., from LLM output)
subset: Either 'arithmetic' or 'semantic'
Returns:
List of extracted prediction values
"""
predictions = [self._extract_first_json_object(p) for p in raw_predictions]
if subset == "semantic":
# Since labels are not dicts, we need to extract the value from the LLM's answer field.
predictions = [self._extract_answer_field(p) for p in predictions]
elif subset == "arithmetic":
# Labels and LLMs differ only by the explanation field. Thus, remove.
predictions = [self._remove_explanation_field(p) for p in predictions]
return predictions
def _extract_references(self, raw_references: list[str], subset: str) -> list[Any]:
"""
Extracts and preprocesses references based on subset type.
Args:
raw_references: List of raw reference strings
subset: Either 'arithmetic' or 'semantic'
Returns:
List of extracted reference values
"""
if subset == "arithmetic":
# Arithmetic references are Python dict strings that need parsing
return [self._parse_reference_label(r) for r in raw_references]
else:
# Semantic references are used as-is
return raw_references
def _compare_pair(self, prediction: Any, reference: Any, subset: str) -> bool:
"""
Compares a single prediction-reference pair.
Args:
prediction: Processed prediction value
reference: Processed reference value
subset: Either 'arithmetic' or 'semantic'
Returns:
True if prediction matches reference, False otherwise
"""
if subset == "arithmetic":
prediction, reference = self._process_arithmetic_prediction(
prediction, reference
)
elif subset == "semantic":
prediction, reference = self._process_semantic_prediction(
prediction, reference
)
return prediction == reference
def _compute(
self,
predictions: list[str],
references: list[str],
subset: Literal["arithmetic", "semantic"],
return_average: bool = True,
) -> dict[str, float | list[bool]]:
"""
Computes accuracy scores for the Test of Time benchmark.
Args:
predictions: List of prediction strings (LLM outputs)
references: List of reference answer strings
subset: Benchmark subset - either 'arithmetic' or 'semantic'
return_average: If True, returns average accuracy; if False,
returns per-sample correctness
Returns:
Dictionary with 'accuracy' key containing either:
- float: average accuracy (if return_average=True)
- list[bool]: per-sample correctness (if return_average=False)
Raises:
ValueError: If subset is not 'arithmetic' or 'semantic'
"""
# Validate subset
if subset not in ["arithmetic", "semantic"]:
raise ValueError(
f"Invalid subset: {subset}. Must be 'arithmetic' or 'semantic'."
)
# Extract and preprocess predictions and references
predictions = self._extract_predictions(predictions, subset)
references = self._extract_references(references, subset)
# Compare each prediction-reference pair
accuracy_scores = [
self._compare_pair(pred, ref, subset)
for pred, ref in zip(predictions, references)
]
# Return average or per-sample scores
if return_average:
return {"accuracy": sum(accuracy_scores) / len(accuracy_scores)}
return {"accuracy": accuracy_scores}