Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,19 +2,31 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from datasets import load_dataset
|
| 5 |
-
|
| 6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
# load speech translation checkpoint
|
| 12 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# load text-to-speech checkpoint and speaker embeddings
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("Matthijs/mms-tts-fra").to(device)
|
| 18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 19 |
|
| 20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
@@ -22,23 +34,40 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
| 22 |
|
| 23 |
|
| 24 |
def translate(audio):
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
|
| 29 |
def synthesise(text):
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device))
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
def speech_to_speech_translation(audio):
|
| 41 |
translated_text = translate(audio)
|
|
|
|
| 42 |
synthesised_speech = synthesise(translated_text)
|
| 43 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 44 |
return 16000, synthesised_speech
|
|
@@ -46,9 +75,8 @@ def speech_to_speech_translation(audio):
|
|
| 46 |
|
| 47 |
title = "Cascaded STST"
|
| 48 |
description = """
|
| 49 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
| 50 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
| 51 |
-
|
| 52 |

|
| 53 |
"""
|
| 54 |
|
|
@@ -75,4 +103,4 @@ with demo:
|
|
| 75 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
| 76 |
|
| 77 |
|
| 78 |
-
demo.launch()
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import torch
|
| 4 |
from datasets import load_dataset
|
| 5 |
+
import librosa
|
| 6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
| 7 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 8 |
|
| 9 |
|
| 10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
# load speech translation checkpoint
|
| 13 |
+
# asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
| 14 |
+
asr_processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
| 15 |
+
asr_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to(device)
|
| 16 |
+
asr_forced_decoder_ids = asr_processor.get_decoder_prompt_ids(language="dutch", task="transcribe")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
|
| 20 |
# load text-to-speech checkpoint and speaker embeddings
|
| 21 |
+
if 0:
|
| 22 |
+
processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
| 23 |
+
|
| 24 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
|
| 25 |
+
if 1:
|
| 26 |
+
from transformers import VitsModel, VitsTokenizer
|
| 27 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-fra")
|
| 28 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra")
|
| 29 |
|
|
|
|
| 30 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 31 |
|
| 32 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
def translate(audio):
|
| 37 |
+
if 0:
|
| 38 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language":"dutch", "task":"transcribe"})
|
| 39 |
+
return outputs["text"]
|
| 40 |
+
else:
|
| 41 |
+
|
| 42 |
+
x, sr = librosa.load(audio)
|
| 43 |
+
input_features = asr_processor(x, sampling_rate=16000, return_tensors="pt").input_features
|
| 44 |
+
predicted_ids = asr_model.generate(input_features, forced_decoder_ids=asr_forced_decoder_ids)
|
| 45 |
+
# decode token ids to text
|
| 46 |
+
transcription = asr_processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 47 |
+
return transcription
|
| 48 |
+
|
| 49 |
|
| 50 |
|
| 51 |
def synthesise(text):
|
| 52 |
+
if 0:
|
| 53 |
+
inputs = processor(text=text, return_tensors="pt")
|
| 54 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
| 55 |
+
return speech.cpu()
|
| 56 |
+
if 1:
|
| 57 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 58 |
+
input_ids = inputs["input_ids"]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
outputs = model(input_ids)
|
| 63 |
+
|
| 64 |
+
speech = outputs.audio[0]
|
| 65 |
+
return speech.cpu()
|
| 66 |
|
| 67 |
|
| 68 |
def speech_to_speech_translation(audio):
|
| 69 |
translated_text = translate(audio)
|
| 70 |
+
print(translated_text)
|
| 71 |
synthesised_speech = synthesise(translated_text)
|
| 72 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 73 |
return 16000, synthesised_speech
|
|
|
|
| 75 |
|
| 76 |
title = "Cascaded STST"
|
| 77 |
description = """
|
| 78 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Dutch. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
| 79 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
|
|
|
| 80 |

|
| 81 |
"""
|
| 82 |
|
|
|
|
| 103 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
| 104 |
|
| 105 |
|
| 106 |
+
demo.launch()
|