Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,24 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from train import CharTokenizer, Seq2Seq, Encoder, Decoder, TransformerTransliterator
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
|
|
|
| 6 |
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
NUM_LAYERS_MODEL = 2
|
| 11 |
DROPOUT = 0.3
|
| 12 |
|
|
@@ -21,8 +33,18 @@ lstm_model.eval()
|
|
| 21 |
print("✅ LSTM model loaded")
|
| 22 |
|
| 23 |
# ----------------------
|
| 24 |
-
#
|
| 25 |
# ----------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
dim_feedforward=512,
|
| 27 |
dropout=0.1,
|
| 28 |
max_len=100
|
|
@@ -33,7 +55,7 @@ transformer_model.eval()
|
|
| 33 |
print("✅ Transformer model loaded")
|
| 34 |
|
| 35 |
# ----------------------
|
| 36 |
-
#
|
| 37 |
# ----------------------
|
| 38 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 39 |
|
|
@@ -46,12 +68,12 @@ try:
|
|
| 46 |
print("✅ LLM model loaded (Flan-T5 Small)")
|
| 47 |
has_llm = True
|
| 48 |
except Exception as e:
|
| 49 |
-
print(f"
|
| 50 |
-
print("
|
| 51 |
has_llm = False
|
| 52 |
|
| 53 |
# ----------------------
|
| 54 |
-
#
|
| 55 |
# ----------------------
|
| 56 |
@torch.no_grad()
|
| 57 |
def transliterate(word):
|
|
@@ -78,7 +100,7 @@ def transliterate(word):
|
|
| 78 |
# LLM prediction (lightweight T5)
|
| 79 |
if has_llm:
|
| 80 |
try:
|
| 81 |
-
prompt = f"Transliterate the
|
| 82 |
inputs = llm_tokenizer(prompt, return_tensors="pt").to(device)
|
| 83 |
output_ids = llm_model.generate(
|
| 84 |
**inputs,
|
|
@@ -97,7 +119,7 @@ def transliterate(word):
|
|
| 97 |
return lstm_pred, transformer_pred, llm_pred
|
| 98 |
|
| 99 |
# ----------------------
|
| 100 |
-
#
|
| 101 |
# ----------------------
|
| 102 |
demo = gr.Interface(
|
| 103 |
fn=transliterate,
|
|
@@ -124,11 +146,11 @@ demo = gr.Interface(
|
|
| 124 |
allow_flagging="never"
|
| 125 |
)
|
| 126 |
|
| 127 |
-
if
|
| 128 |
print("🚀 Starting Gradio interface...")
|
| 129 |
demo.launch(
|
| 130 |
share=False,
|
| 131 |
debug=False,
|
| 132 |
server_name="0.0.0.0",
|
| 133 |
server_port=7860
|
| 134 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
from train import CharTokenizer, Seq2Seq, Encoder, Decoder, TransformerTransliterator
|
| 5 |
|
| 6 |
+
# ----------------------
|
| 7 |
+
# Load LSTM checkpoint
|
| 8 |
+
# ----------------------
|
| 9 |
+
lstm_ckpt_path = "lstm_transliterator.pt"
|
| 10 |
+
lstm_ckpt = torch.load(lstm_ckpt_path, map_location='cpu')
|
| 11 |
|
| 12 |
+
src_vocab = lstm_ckpt['src_vocab']
|
| 13 |
+
tgt_vocab = lstm_ckpt['tgt_vocab']
|
| 14 |
|
| 15 |
+
src_tokenizer = CharTokenizer(vocab=src_vocab)
|
| 16 |
+
tgt_tokenizer = CharTokenizer(vocab=tgt_vocab)
|
| 17 |
|
| 18 |
+
# Reconstruct LSTM model architecture
|
| 19 |
+
EMBED_DIM = 256
|
| 20 |
+
ENC_HIDDEN_DIM = 256
|
| 21 |
+
DEC_HIDDEN_DIM = 256
|
| 22 |
NUM_LAYERS_MODEL = 2
|
| 23 |
DROPOUT = 0.3
|
| 24 |
|
|
|
|
| 33 |
print("✅ LSTM model loaded")
|
| 34 |
|
| 35 |
# ----------------------
|
| 36 |
+
# Load Transformer checkpoint
|
| 37 |
# ----------------------
|
| 38 |
+
transformer_ckpt_path = "transformer_transliterator.pt"
|
| 39 |
+
transformer_ckpt = torch.load(transformer_ckpt_path, map_location='cpu')
|
| 40 |
+
|
| 41 |
+
transformer_model = TransformerTransliterator(
|
| 42 |
+
src_vocab_size=len(src_tokenizer),
|
| 43 |
+
tgt_vocab_size=len(tgt_tokenizer),
|
| 44 |
+
d_model=256,
|
| 45 |
+
nhead=8,
|
| 46 |
+
num_encoder_layers=2,
|
| 47 |
+
num_decoder_layers=2,
|
| 48 |
dim_feedforward=512,
|
| 49 |
dropout=0.1,
|
| 50 |
max_len=100
|
|
|
|
| 55 |
print("✅ Transformer model loaded")
|
| 56 |
|
| 57 |
# ----------------------
|
| 58 |
+
# Load lightweight LLM (DistilBERT-based or small model)
|
| 59 |
# ----------------------
|
| 60 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 61 |
|
|
|
|
| 68 |
print("✅ LLM model loaded (Flan-T5 Small)")
|
| 69 |
has_llm = True
|
| 70 |
except Exception as e:
|
| 71 |
+
print(f"⚠ LLM loading failed: {e}")
|
| 72 |
+
print("⚠ Will use only LSTM and Transformer models")
|
| 73 |
has_llm = False
|
| 74 |
|
| 75 |
# ----------------------
|
| 76 |
+
# Transliteration Function
|
| 77 |
# ----------------------
|
| 78 |
@torch.no_grad()
|
| 79 |
def transliterate(word):
|
|
|
|
| 100 |
# LLM prediction (lightweight T5)
|
| 101 |
if has_llm:
|
| 102 |
try:
|
| 103 |
+
prompt = f"Transliterate the Romanized Hindi word to Devanagari script: {word}"
|
| 104 |
inputs = llm_tokenizer(prompt, return_tensors="pt").to(device)
|
| 105 |
output_ids = llm_model.generate(
|
| 106 |
**inputs,
|
|
|
|
| 119 |
return lstm_pred, transformer_pred, llm_pred
|
| 120 |
|
| 121 |
# ----------------------
|
| 122 |
+
# Gradio Interface
|
| 123 |
# ----------------------
|
| 124 |
demo = gr.Interface(
|
| 125 |
fn=transliterate,
|
|
|
|
| 146 |
allow_flagging="never"
|
| 147 |
)
|
| 148 |
|
| 149 |
+
if _name_ == "_main_":
|
| 150 |
print("🚀 Starting Gradio interface...")
|
| 151 |
demo.launch(
|
| 152 |
share=False,
|
| 153 |
debug=False,
|
| 154 |
server_name="0.0.0.0",
|
| 155 |
server_port=7860
|
| 156 |
+
)
|