Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''NEURAL STYLE TRANSFER'''
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
"""##Importing Libraries"""
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import tensorflow as tf
|
| 9 |
+
# import os
|
| 10 |
+
import PIL
|
| 11 |
+
from PIL import Image,ImageOps
|
| 12 |
+
import numpy as np
|
| 13 |
+
# import time
|
| 14 |
+
# import requests
|
| 15 |
+
import cv2
|
| 16 |
+
from cv2 import *
|
| 17 |
+
|
| 18 |
+
# !mkdir nstmodel
|
| 19 |
+
# !wget -c https://storage.googleapis.com/tfhub-modules/google/magenta/arbitrary-image-stylization-v1-256/2.tar.gz -O - | tar -xz -C /nstmodel
|
| 20 |
+
# import tensorflow.keras
|
| 21 |
+
|
| 22 |
+
# from PIL import Image, ImageOps
|
| 23 |
+
#import requests
|
| 24 |
+
#import tarfile
|
| 25 |
+
'''
|
| 26 |
+
url = "https://storage.googleapis.com/tfhub-modules/google/magenta/arbitrary-image-stylization-v1-256/2.tar.gz"
|
| 27 |
+
response = requests.get(url,stream=True)
|
| 28 |
+
path_input="./"
|
| 29 |
+
urllib.request.urlretrieve(url, filename=path_input)
|
| 30 |
+
file = tarfile.open(fileobj=response.raw, mode="r|gz")
|
| 31 |
+
file.extractall(path="./nst_model")
|
| 32 |
+
'''
|
| 33 |
+
MODEL_PATH='Nst model'
|
| 34 |
+
|
| 35 |
+
# Disable scientific notation for clarity
|
| 36 |
+
np.set_printoptions(suppress=True)
|
| 37 |
+
|
| 38 |
+
# Load the model
|
| 39 |
+
model = tf.keras.models.load_model(MODEL_PATH)
|
| 40 |
+
|
| 41 |
+
def tensor_to_image(tensor):
|
| 42 |
+
tensor = tensor*255
|
| 43 |
+
tensor = np.array(tensor, dtype=np.uint8)
|
| 44 |
+
if np.ndim(tensor)>3:
|
| 45 |
+
assert tensor.shape[0] == 1
|
| 46 |
+
tensor = tensor[0]
|
| 47 |
+
return PIL.Image.fromarray(tensor)
|
| 48 |
+
|
| 49 |
+
"""##Saving unscaled Tensor images."""
|
| 50 |
+
|
| 51 |
+
def save_image(image, filename):
|
| 52 |
+
"""
|
| 53 |
+
Saves unscaled Tensor Images.
|
| 54 |
+
Args:
|
| 55 |
+
image: 3D image tensor. [height, width, channels]
|
| 56 |
+
filename: Name of the file to save to.
|
| 57 |
+
"""
|
| 58 |
+
if not isinstance(image, Image.Image):
|
| 59 |
+
image = tf.clip_by_value(image, 0, 255)
|
| 60 |
+
image = Image.fromarray(tf.cast(image, tf.uint8).numpy())
|
| 61 |
+
image.save("%s.jpg" % filename)
|
| 62 |
+
print("Saved as %s.jpg" % filename)
|
| 63 |
+
|
| 64 |
+
"""## Grayscaling image for testing purpose to check if we could get better results."""
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def gray_scaled(inp_img):
|
| 69 |
+
gray = cv2.cvtColor(inp_img, cv2.COLOR_BGR2GRAY)
|
| 70 |
+
gray_img = np.zeros_like(inp_img)
|
| 71 |
+
gray_img[:,:,0] = gray
|
| 72 |
+
gray_img[:,:,1] = gray
|
| 73 |
+
gray_img[:,:,2] = gray
|
| 74 |
+
return gray_img
|
| 75 |
+
|
| 76 |
+
def transform_mymodel(content_image,style_image):
|
| 77 |
+
# Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]
|
| 78 |
+
content_image=gray_scaled(content_image)
|
| 79 |
+
content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.0
|
| 80 |
+
style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.0
|
| 81 |
+
|
| 82 |
+
#Resizing image
|
| 83 |
+
style_image = tf.image.resize(style_image, (256, 256))
|
| 84 |
+
|
| 85 |
+
# Stylize image
|
| 86 |
+
outputs = model(tf.constant(content_image), tf.constant(style_image))
|
| 87 |
+
stylized_image = outputs[0]
|
| 88 |
+
|
| 89 |
+
# stylized = tf.image.resize(stylized_image, (356, 356))
|
| 90 |
+
stylized_image =tensor_to_image(stylized_image)
|
| 91 |
+
save_image(stylized_image,'stylized')
|
| 92 |
+
return stylized_image
|
| 93 |
+
|
| 94 |
+
def gradio_intrface(mymodel):
|
| 95 |
+
# Initializing the input component
|
| 96 |
+
image1 = gr.inputs.Image() #CONTENT IMAGE
|
| 97 |
+
image2 = gr.inputs.Image() #STYLE IMAGE
|
| 98 |
+
stylizedimg=gr.outputs.Image()
|
| 99 |
+
gr.Interface(fn=mymodel, inputs= [image1,image2] , outputs= stylizedimg,title='Style Transfer').launch()
|
| 100 |
+
|
| 101 |
+
"""The function will be launched both Inline and Outline where u need to add a content and style image."""
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
gradio_intrface(transform_mymodel)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|