Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
from fastapi import FastAPI, Request
|
| 3 |
+
import uvicorn
|
| 4 |
+
|
| 5 |
+
model_name = "ibm-granite/granite-3.2-8b-instruct"
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 8 |
+
|
| 9 |
+
app = FastAPI()
|
| 10 |
+
|
| 11 |
+
@app.post("/generate")
|
| 12 |
+
async def generate_text(request: Request):
|
| 13 |
+
data = await request.json()
|
| 14 |
+
prompt = data.get("prompt", "")
|
| 15 |
+
|
| 16 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 17 |
+
outputs = model.generate(**inputs, max_new_tokens=150)
|
| 18 |
+
|
| 19 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 20 |
+
return {"output": response_text}
|
| 21 |
+
|
| 22 |
+
if __name__ == "__main__":
|
| 23 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|