Spaces:
Sleeping
Sleeping
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from fastapi import FastAPI, Request | |
| import uvicorn | |
| model_name = "ibm-granite/granite-7b-base" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| app = FastAPI() | |
| async def generate_text(request: Request): | |
| data = await request.json() | |
| prompt = data.get("prompt", "") | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate(**inputs, max_new_tokens=150) | |
| response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return {"output": response_text} | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="0.0.0.0", port=7860) | |