File size: 6,987 Bytes
593d539 bfe81d6 593d539 5c245fa 03a5c9f bfe81d6 5c245fa bfe81d6 5c245fa 593d539 5c245fa 593d539 5c245fa 593d539 5c245fa 593d539 5c245fa 593d539 5c245fa b02904a 5c245fa 8919734 5c245fa b02904a 5c245fa 8919734 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
import spaces
import os
import torch
import tempfile
from pathlib import Path
# Try to import DiariZen
try:
from diarizen.pipelines.inference import DiariZenPipeline
DIARIZEN_AVAILABLE = True
except ImportError:
DIARIZEN_AVAILABLE = False
print("⚠️ DiariZen not available - install from https://github.com/BUTSpeechFIT/DiariZen")
# Model cache
pipeline_cache = {}
def load_diarizen_pipeline(model_id="BUT-FIT/diarizen-wavlm-large-s80-md"):
"""Load DiariZen pipeline with caching"""
if model_id in pipeline_cache:
return pipeline_cache[model_id]
try:
print(f"Loading DiariZen model: {model_id}")
pipeline = DiariZenPipeline.from_pretrained(model_id)
# Move to GPU if available
if torch.cuda.is_available():
print("Moving pipeline to CUDA")
pipeline.to(torch.device("cuda"))
pipeline_cache[model_id] = pipeline
print(f"✅ Model loaded successfully")
return pipeline
except Exception as e:
print(f"❌ Error loading model: {e}")
raise e
def format_diarization_results(annotations):
"""Format diarization results as readable text"""
results = []
results.append("# Diarization Results\n\n")
results.append("| Start Time | End Time | Duration | Speaker |\n")
results.append("|------------|----------|----------|----------|\n")
for turn, _, speaker in annotations.itertracks(yield_label=True):
duration = turn.end - turn.start
results.append(
f"| {turn.start:8.2f}s | {turn.end:8.2f}s | {duration:6.2f}s | {speaker} |\n"
)
return "".join(results)
def save_rttm(annotations, audio_filename):
"""Save annotations to RTTM format"""
# Create temporary directory for RTTM
temp_dir = tempfile.mkdtemp()
rttm_path = Path(temp_dir) / f"{audio_filename}.rttm"
with open(rttm_path, 'w') as f:
for turn, _, speaker in annotations.itertracks(yield_label=True):
duration = turn.end - turn.start
# RTTM format: SPEAKER <file> 1 <start> <duration> <NA> <NA> <speaker> <NA> <NA>
f.write(f"SPEAKER {audio_filename} 1 {turn.start:.3f} {duration:.3f} <NA> <NA> {speaker} <NA> <NA>\n")
return str(rttm_path)
@spaces.GPU(duration=120)
def diarize_audio(audio_file, model_choice):
"""Main diarization function with GPU acceleration"""
if not DIARIZEN_AVAILABLE:
return "❌ Error: DiariZen not installed. Please install from https://github.com/BUTSpeechFIT/DiariZen", None
if audio_file is None:
return "⚠️ Please upload an audio file", None
try:
# Map model choice to model ID
model_map = {
"WavLM Large (Recommended)": "BUT-FIT/diarizen-wavlm-large-s80-md",
"WavLM Base (Faster)": "BUT-FIT/diarizen-wavlm-base-s80-md",
"WavLM Large MLC": "BUT-FIT/diarizen-wavlm-large-s80-mlc"
}
model_id = model_map[model_choice]
# Load pipeline
pipeline = load_diarizen_pipeline(model_id)
# Get audio filename
audio_path = Path(audio_file)
audio_name = audio_path.stem
print(f"🎤 Processing audio: {audio_file}")
# Run diarization
annotations = pipeline(audio_file)
print(f"✅ Diarization complete")
# Format results
results_text = format_diarization_results(annotations)
# Save RTTM
rttm_path = save_rttm(annotations, audio_name)
return results_text, rttm_path
except Exception as e:
error_msg = f"❌ Error during diarization:\n{str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
return error_msg, None
# Build Gradio Interface
with gr.Blocks(title="DiariZen Speaker Diarization") as demo:
gr.Markdown("""
# 🎙️ DiariZen - Speaker Diarization
**Upload audio → Select model → Run diarization → View results & Download RTTM**
DiariZen: High-performance speaker diarization toolkit from BUT-FIT
""")
if not DIARIZEN_AVAILABLE:
gr.Markdown("""
⚠️ **DiariZen not installed**
To use this Space, DiariZen must be installed. Please see:
https://github.com/BUTSpeechFIT/DiariZen
""")
with gr.Row():
with gr.Column():
# Audio input
audio_input = gr.Audio(
label="📤 Upload Audio File",
type="filepath",
sources=["upload", "microphone"]
)
# Model selection
model_dropdown = gr.Dropdown(
choices=[
"WavLM Large (Recommended)",
"WavLM Base (Faster)",
"WavLM Large MLC"
],
value="WavLM Large (Recommended)",
label="🤖 Select Model",
info="Choose diarization model"
)
# Run button
run_btn = gr.Button("▶️ Run Diarization", variant="primary", size="lg")
with gr.Column():
# Results output
results_output = gr.Textbox(
label="📊 Diarization Results",
lines=20,
max_lines=30,
show_copy_button=True
)
# RTTM download
rttm_output = gr.File(
label="📝 Download RTTM",
interactive=False
)
# Model information
with gr.Accordion("ℹ️ Model Information", open=False):
gr.Markdown("""
### Available Models
| Model | Parameters | Speed | Quality | Description |
|-------|-----------|-------|---------|-------------|
| WavLM Large | 63M | Fast | High | Recommended for most use cases |
| WavLM Base | - | Very Fast | Good | Faster variant for quick processing |
| WavLM Large MLC | 63M | Fast | High | Multi-language optimized |
### Performance
DiariZen substantially outperforms Pyannote v3.1:
- AMI-SDM: 13.9% DER (vs 22.4% Pyannote)
- VoxConverse: 9.1% DER (vs 11.3% Pyannote)
- AISHELL-4: 10.1% DER (vs 12.2% Pyannote)
### Citation
```bibtex
@inproceedings{diariZen2024,
title={DiariZen: A toolkit for speaker diarization},
author={Han, Ivo and Landini, Federico and Burget, Lukáš and Černocký, Jan},
booktitle={INTERSPEECH},
year={2024}
}
```
""")
# Footer
gr.Markdown("""
---
**Source**: [github.com/BUTSpeechFIT/DiariZen](https://github.com/BUTSpeechFIT/DiariZen)
**License**: MIT (Code) | Research/Non-commercial (Models)
""")
# Connect button to function
run_btn.click(
fn=diarize_audio,
inputs=[audio_input, model_dropdown],
outputs=[results_output, rttm_output]
)
if __name__ == "__main__":
demo.launch()
|