| import aiohttp | |
| import json | |
| import logging | |
| import torch | |
| import faiss | |
| import numpy as np | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from typing import List, Dict, Any | |
| from cryptography.fernet import Fernet | |
| from jwt import encode, decode, ExpiredSignatureError | |
| from datetime import datetime, timedelta | |
| import blockchain_module | |
| import speech_recognition as sr | |
| import pyttsx3 | |
| from components.adaptive_learning import AdaptiveLearningEnvironment | |
| from components.real_time_data import RealTimeDataIntegrator | |
| from components.sentiment_analysis import EnhancedSentimentAnalyzer | |
| from components.self_improving_ai import SelfImprovingAI | |
| from components.multi_agent import MultiAgentSystem | |
| from utils.database import Database | |
| from utils.logger import logger | |
| class AICore: | |
| def __init__(self, config_path: str = "config.json"): | |
| self.config = self._load_config(config_path) | |
| self.models = self._initialize_models() | |
| self.context_memory = self._initialize_vector_memory() | |
| self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) | |
| self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) | |
| self.http_session = aiohttp.ClientSession() | |
| self.database = Database() | |
| self.sentiment_analyzer = EnhancedSentimentAnalyzer() | |
| self.data_fetcher = RealTimeDataIntegrator() | |
| self.self_improving_ai = SelfImprovingAI() | |
| self.multi_agent_system = MultiAgentSystem() | |
| self._encryption_key = Fernet.generate_key() | |
| self.jwt_secret = "your_jwt_secret_key" | |
| self.speech_engine = pyttsx3.init() | |
| def _load_config(self, config_path: str) -> dict: | |
| with open(config_path, 'r') as file: | |
| return json.load(file) | |
| def _initialize_models(self): | |
| return { | |
| "mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), | |
| "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) | |
| } | |
| def _initialize_vector_memory(self): | |
| return faiss.IndexFlatL2(768) | |
| async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: | |
| try: | |
| vectorized_query = self._vectorize_query(query) | |
| self.context_memory.add(np.array([vectorized_query])) | |
| model_response = await self._generate_local_model_response(query) | |
| agent_response = self.multi_agent_system.delegate_task(query) | |
| sentiment = self.sentiment_analyzer.detailed_analysis(query) | |
| final_response = self._apply_security_filters(model_response + agent_response) | |
| self.database.log_interaction(user_id, query, final_response) | |
| blockchain_module.store_interaction(user_id, query, final_response) | |
| self._speak_response(final_response) | |
| return { | |
| "response": final_response, | |
| "sentiment": sentiment, | |
| "security_level": self._evaluate_risk(final_response), | |
| "real_time_data": self.data_fetcher.fetch_latest_data(), | |
| "token_optimized": True | |
| } | |
| except Exception as e: | |
| logger.error(f"Response generation failed: {e}") | |
| return {"error": "Processing failed - safety protocols engaged"} | |
| def _vectorize_query(self, query: str): | |
| tokenized = self.tokenizer(query, return_tensors="pt") | |
| return tokenized["input_ids"].detach().numpy() | |
| def _apply_security_filters(self, response: str): | |
| return response.replace("malicious", "[filtered]") | |
| async def _generate_local_model_response(self, query: str) -> str: | |
| inputs = self.tokenizer(query, return_tensors="pt") | |
| outputs = self.model.generate(**inputs) | |
| return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| def generate_jwt(self, user_id: int): | |
| payload = { | |
| "user_id": user_id, | |
| "exp": datetime.utcnow() + timedelta(hours=1) | |
| } | |
| return encode(payload, self.jwt_secret, algorithm="HS256") | |
| def verify_jwt(self, token: str): | |
| try: | |
| return decode(token, self.jwt_secret, algorithms=["HS256"]) | |
| except ExpiredSignatureError: | |
| return None | |
| def _speak_response(self, response: str): | |
| self.speech_engine.say(response) | |
| self.speech_engine.runAndWait() | |