Spaces:
Running
Running
GitHub Actions
commited on
Commit
·
8511cb6
0
Parent(s):
Deploy from GitHub Actions
Browse files- .streamlit/config.toml +10 -0
- .streamlit/secrets.toml +5 -0
- Dockerfile +33 -0
- README.md +11 -0
- app.py +474 -0
- requirements.txt +13 -0
- utils.py +230 -0
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[theme]
|
| 2 |
+
primaryColor = "#1a9850"
|
| 3 |
+
backgroundColor = "#1e1e1e"
|
| 4 |
+
secondaryBackgroundColor = "#2d2d2d"
|
| 5 |
+
textColor = "#ffffff"
|
| 6 |
+
|
| 7 |
+
[server]
|
| 8 |
+
headless = true
|
| 9 |
+
enableCORS = false
|
| 10 |
+
enableXsrfProtection = false
|
.streamlit/secrets.toml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Add your secrets here
|
| 2 |
+
# HF_TOKEN = "hf_your_token_here"
|
| 3 |
+
# DATASET_ID = "Rahul-fix/cologne-green-data"
|
| 4 |
+
#
|
| 5 |
+
# NOTE: For HF Spaces, set these in Settings > Repository secrets instead
|
Dockerfile
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11-slim
|
| 2 |
+
|
| 3 |
+
# Install system dependencies for GDAL/rasterio
|
| 4 |
+
RUN apt-get update && \
|
| 5 |
+
apt-get install -y --no-install-recommends \
|
| 6 |
+
build-essential \
|
| 7 |
+
libgdal-dev \
|
| 8 |
+
gdal-bin \
|
| 9 |
+
libgeos-dev \
|
| 10 |
+
libproj-dev \
|
| 11 |
+
curl \
|
| 12 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 13 |
+
|
| 14 |
+
# Set GDAL environment
|
| 15 |
+
ENV GDAL_CONFIG=/usr/bin/gdal-config
|
| 16 |
+
|
| 17 |
+
WORKDIR /app
|
| 18 |
+
|
| 19 |
+
# Copy requirements first for caching
|
| 20 |
+
COPY requirements.txt .
|
| 21 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 22 |
+
|
| 23 |
+
# Copy app files
|
| 24 |
+
COPY app.py utils.py ./
|
| 25 |
+
|
| 26 |
+
# Expose Streamlit port (HF Spaces uses 7860)
|
| 27 |
+
EXPOSE 7860
|
| 28 |
+
|
| 29 |
+
# Health check
|
| 30 |
+
HEALTHCHECK CMD curl --fail http://localhost:7860/_stcore/health || exit 1
|
| 31 |
+
|
| 32 |
+
# Run Streamlit
|
| 33 |
+
CMD ["streamlit", "run", "app.py", "--server.port=7860", "--server.address=0.0.0.0", "--server.enableCORS=false", "--server.enableXsrfProtection=false"]
|
README.md
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Cologne Green Project
|
| 3 |
+
emoji: 🌳
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: docker
|
| 7 |
+
pinned: false
|
| 8 |
+
short_description: 'Urban green analysis as a part of #Correlaid lc Cologne'
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
For more information, Check out the project on GitHub: https://github.com/Rahul-fix/cologne-green-project
|
app.py
ADDED
|
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import matplotlib.colors as mcolors
|
| 6 |
+
import folium
|
| 7 |
+
from streamlit_folium import st_folium
|
| 8 |
+
from shapely.geometry import Point, box
|
| 9 |
+
import geopandas as gpd
|
| 10 |
+
import duckdb
|
| 11 |
+
import rasterio
|
| 12 |
+
from huggingface_hub import HfFileSystem
|
| 13 |
+
import shapely.wkb
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
import os
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
|
| 18 |
+
# Import extracted utilities (shared with app_local.py)
|
| 19 |
+
from utils import (
|
| 20 |
+
FLAIR_COLORS, CLASS_LABELS, process_mosaic
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# --- Cloud Configuration ---
|
| 24 |
+
load_dotenv()
|
| 25 |
+
env_path = Path(__file__).parent.parent / "DL_cologne_green" / ".env"
|
| 26 |
+
if env_path.exists():
|
| 27 |
+
load_dotenv(env_path)
|
| 28 |
+
|
| 29 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 30 |
+
DATASET_ID = os.getenv("DATASET_ID", "Rahul-fix/cologne-green-data")
|
| 31 |
+
BASE_URL = f"hf://datasets/{DATASET_ID}"
|
| 32 |
+
STORAGE_OPTS = {"token": HF_TOKEN} if HF_TOKEN else None
|
| 33 |
+
|
| 34 |
+
# --- DuckDB Connection ---
|
| 35 |
+
@st.cache_resource
|
| 36 |
+
def get_db_connection():
|
| 37 |
+
con = duckdb.connect(database=":memory:")
|
| 38 |
+
con.execute("INSTALL spatial; LOAD spatial;")
|
| 39 |
+
con.execute("INSTALL httpfs; LOAD httpfs;")
|
| 40 |
+
if HF_TOKEN:
|
| 41 |
+
fs = HfFileSystem(token=HF_TOKEN)
|
| 42 |
+
con.register_filesystem(fs)
|
| 43 |
+
return con
|
| 44 |
+
|
| 45 |
+
con = get_db_connection()
|
| 46 |
+
|
| 47 |
+
# --- Cloud Data Loading Functions (mirror utils.py structure) ---
|
| 48 |
+
def safe_load_wkb(x):
|
| 49 |
+
try: return shapely.wkb.loads(bytes(x))
|
| 50 |
+
except: return None
|
| 51 |
+
|
| 52 |
+
@st.cache_data(ttl=3600)
|
| 53 |
+
def load_quarters_with_stats():
|
| 54 |
+
"""Load Veedel boundaries with stats - Cloud version of utils.load_quarters_with_stats"""
|
| 55 |
+
try:
|
| 56 |
+
query = f"""
|
| 57 |
+
SELECT
|
| 58 |
+
v.name, ST_AsWKB(v.geometry) as geometry,
|
| 59 |
+
COALESCE(s.green_area_m2, 0) as green_area_m2,
|
| 60 |
+
COALESCE(s.ndvi_mean, 0) as ndvi_mean,
|
| 61 |
+
v.Shape_Area,
|
| 62 |
+
s.area_0, s.area_1, s.area_2, s.area_3, s.area_4, s.area_5, s.area_6, s.area_7,
|
| 63 |
+
s.area_8, s.area_9, s.area_10, s.area_11, s.area_12, s.area_13, s.area_14, s.area_15,
|
| 64 |
+
s.area_16, s.area_17, s.area_18
|
| 65 |
+
FROM '{BASE_URL}/data/boundaries/Stadtviertel.parquet' v
|
| 66 |
+
LEFT JOIN '{BASE_URL}/data/stats/extended_stats.parquet' s ON v.name = s.name
|
| 67 |
+
"""
|
| 68 |
+
df = con.execute(query).fetchdf()
|
| 69 |
+
df['geometry'] = df['geometry'].apply(safe_load_wkb)
|
| 70 |
+
df = df.dropna(subset=['geometry'])
|
| 71 |
+
|
| 72 |
+
gdf = gpd.GeoDataFrame(df, geometry='geometry', crs="EPSG:4326")
|
| 73 |
+
|
| 74 |
+
# CRS Check (remote data may be in EPSG:25832)
|
| 75 |
+
if not gdf.empty and gdf.total_bounds[0] > 180:
|
| 76 |
+
gdf.crs = "EPSG:25832"
|
| 77 |
+
gdf = gdf.to_crs("EPSG:4326")
|
| 78 |
+
|
| 79 |
+
# Calculate green_pct
|
| 80 |
+
if 'green_area_m2' in gdf.columns and 'Shape_Area' in gdf.columns:
|
| 81 |
+
gdf['green_pct'] = (gdf['green_area_m2'] / gdf['Shape_Area']) * 100
|
| 82 |
+
else:
|
| 83 |
+
gdf['green_pct'] = 0.0
|
| 84 |
+
|
| 85 |
+
return gdf
|
| 86 |
+
except Exception as e:
|
| 87 |
+
st.error(f"Error loading quarters: {e}")
|
| 88 |
+
return gpd.GeoDataFrame()
|
| 89 |
+
|
| 90 |
+
@st.cache_data(ttl=3600)
|
| 91 |
+
def load_boroughs():
|
| 92 |
+
"""Load borough boundaries - Cloud version of utils.load_boroughs"""
|
| 93 |
+
try:
|
| 94 |
+
query = f"SELECT STB_NAME as name, ST_AsWKB(geometry) as geometry FROM '{BASE_URL}/data/boundaries/Stadtbezirke.parquet'"
|
| 95 |
+
df = con.execute(query).fetchdf()
|
| 96 |
+
df['geometry'] = df['geometry'].apply(safe_load_wkb)
|
| 97 |
+
df = df.dropna(subset=['geometry'])
|
| 98 |
+
|
| 99 |
+
gdf = gpd.GeoDataFrame(df, geometry='geometry', crs="EPSG:4326")
|
| 100 |
+
|
| 101 |
+
if not gdf.empty and gdf.total_bounds[0] > 180:
|
| 102 |
+
gdf.crs = "EPSG:25832"
|
| 103 |
+
gdf = gdf.to_crs("EPSG:4326")
|
| 104 |
+
|
| 105 |
+
return gdf
|
| 106 |
+
except Exception as e:
|
| 107 |
+
st.error(f"Error loading boroughs: {e}")
|
| 108 |
+
return gpd.GeoDataFrame()
|
| 109 |
+
|
| 110 |
+
@st.cache_data(ttl=3600)
|
| 111 |
+
def get_tile_to_veedel_mapping():
|
| 112 |
+
"""Get tile-to-Veedel mapping - Cloud version of utils.get_tile_to_veedel_mapping"""
|
| 113 |
+
try:
|
| 114 |
+
tiles_df = pd.read_csv(f"{BASE_URL}/data/metadata/cologne_tiles.csv", storage_options=STORAGE_OPTS)
|
| 115 |
+
geometries = [box(r['Koordinatenursprung_East'], r['Koordinatenursprung_North'],
|
| 116 |
+
r['Koordinatenursprung_East']+1000, r['Koordinatenursprung_North']+1000) for _, r in tiles_df.iterrows()]
|
| 117 |
+
tiles_gdf = gpd.GeoDataFrame(tiles_df, geometry=geometries, crs="EPSG:25832")
|
| 118 |
+
|
| 119 |
+
q_gdf = gpd.read_parquet(f"{BASE_URL}/data/boundaries/Stadtviertel.parquet", storage_options=STORAGE_OPTS)
|
| 120 |
+
if q_gdf.crs != "EPSG:25832": q_gdf = q_gdf.to_crs("EPSG:25832")
|
| 121 |
+
|
| 122 |
+
joined = gpd.sjoin(tiles_gdf, q_gdf, how="inner", predicate="intersects")
|
| 123 |
+
return joined.groupby('name')['Kachelname'].apply(list).to_dict()
|
| 124 |
+
except Exception as e:
|
| 125 |
+
return {}
|
| 126 |
+
|
| 127 |
+
@st.cache_data(ttl=3600)
|
| 128 |
+
def list_available_tiles():
|
| 129 |
+
"""List available tiles from cloud (processed, web_optimized, or raw)"""
|
| 130 |
+
try:
|
| 131 |
+
fs = HfFileSystem(token=HF_TOKEN)
|
| 132 |
+
tiles = set()
|
| 133 |
+
|
| 134 |
+
# Check processed masks
|
| 135 |
+
processed_files = fs.glob(f"datasets/{DATASET_ID}/data/processed/*_mask.tif")
|
| 136 |
+
for f in processed_files:
|
| 137 |
+
tiles.add(Path(f).stem.replace("_mask", ""))
|
| 138 |
+
|
| 139 |
+
# Check web_optimized masks
|
| 140 |
+
web_opt_files = fs.glob(f"datasets/{DATASET_ID}/data/web_optimized/*_mask.tif")
|
| 141 |
+
for f in web_opt_files:
|
| 142 |
+
tiles.add(Path(f).stem.replace("_mask", ""))
|
| 143 |
+
|
| 144 |
+
# Also include raw tiles (for satellite view)
|
| 145 |
+
raw_files = fs.glob(f"datasets/{DATASET_ID}/data/raw/*.jp2")
|
| 146 |
+
for f in raw_files:
|
| 147 |
+
tiles.add(Path(f).stem)
|
| 148 |
+
|
| 149 |
+
return list(tiles)
|
| 150 |
+
except:
|
| 151 |
+
return []
|
| 152 |
+
|
| 153 |
+
def get_mosaic_data_remote(tile_names, layer_type):
|
| 154 |
+
"""Load and mosaic tiles - Cloud version of utils.get_mosaic_data_local"""
|
| 155 |
+
fs = HfFileSystem(token=HF_TOKEN)
|
| 156 |
+
sources = []
|
| 157 |
+
memfiles = []
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
for tile in tile_names:
|
| 161 |
+
suffix = "_mask" if "Land Cover" in layer_type else "_ndvi" if "NDVI" in layer_type else ""
|
| 162 |
+
|
| 163 |
+
paths = [
|
| 164 |
+
f"datasets/{DATASET_ID}/data/web_optimized/{tile}{suffix}.tif",
|
| 165 |
+
f"datasets/{DATASET_ID}/data/processed/{tile}{suffix}.tif",
|
| 166 |
+
]
|
| 167 |
+
if layer_type == "Satellite":
|
| 168 |
+
paths.append(f"datasets/{DATASET_ID}/data/raw/{tile}.jp2")
|
| 169 |
+
|
| 170 |
+
found_bytes = None
|
| 171 |
+
for p in paths:
|
| 172 |
+
try:
|
| 173 |
+
with fs.open(p, "rb") as f:
|
| 174 |
+
found_bytes = f.read()
|
| 175 |
+
break
|
| 176 |
+
except: continue
|
| 177 |
+
|
| 178 |
+
if found_bytes:
|
| 179 |
+
m = rasterio.MemoryFile(found_bytes)
|
| 180 |
+
memfiles.append(m)
|
| 181 |
+
sources.append(m.open())
|
| 182 |
+
|
| 183 |
+
# Use shared processing logic
|
| 184 |
+
result = process_mosaic(sources, layer_type)
|
| 185 |
+
|
| 186 |
+
# Cleanup
|
| 187 |
+
for s in sources: s.close()
|
| 188 |
+
for m in memfiles: m.close()
|
| 189 |
+
|
| 190 |
+
return result
|
| 191 |
+
except Exception as e:
|
| 192 |
+
return None, None
|
| 193 |
+
|
| 194 |
+
# 1. Page Configuration
|
| 195 |
+
st.set_page_config(page_title="GreenCologne (Cloud)", layout="wide")
|
| 196 |
+
st.title("🌿 GreenCologne (Cloud Dashboard)")
|
| 197 |
+
|
| 198 |
+
# --- Sidebar: Dataset Info ---
|
| 199 |
+
with st.sidebar:
|
| 200 |
+
st.header("ℹ️ About This Dataset")
|
| 201 |
+
|
| 202 |
+
with st.expander("📡 Data Sources", expanded=False):
|
| 203 |
+
st.markdown("""
|
| 204 |
+
**Satellite Imagery**
|
| 205 |
+
[OpenNRW DOP10](https://www.bezreg-koeln.nrw.de/geobasis-nrw/produkte-und-dienste/luftbild-und-satellitenbildinformationen/aktuelle-luftbild-und-0) – 10cm resolution aerial photos (2022-2025)
|
| 206 |
+
|
| 207 |
+
**Administrative Boundaries**
|
| 208 |
+
[Offene Daten Köln](https://www.offenedaten-koeln.de/) – Stadtviertel & Stadtbezirke
|
| 209 |
+
|
| 210 |
+
**Coverage**
|
| 211 |
+
840 tiles covering Cologne's 86 Veedels
|
| 212 |
+
""")
|
| 213 |
+
|
| 214 |
+
with st.expander("🤖 Model & Methodology", expanded=False):
|
| 215 |
+
st.markdown("""
|
| 216 |
+
**Land Cover Classification**
|
| 217 |
+
[FLAIR-Hub](https://huggingface.co/IGNF/FLAIR-HUB_LC-A_IR_swinbase-upernet) – Deep learning semantic segmentation trained on French aerial imagery, adapted for German urban landscapes.
|
| 218 |
+
|
| 219 |
+
**19 Land Cover Classes**
|
| 220 |
+
Buildings, deciduous trees, herbaceous vegetation, water, impervious surfaces, agricultural land, and more.
|
| 221 |
+
|
| 222 |
+
**NDVI Calculation**
|
| 223 |
+
Normalized Difference Vegetation Index computed from NIR and Red bands:
|
| 224 |
+
`NDVI = (NIR - Red) / (NIR + Red)`
|
| 225 |
+
|
| 226 |
+
**Green Area Detection**
|
| 227 |
+
Classes 4 (Deciduous), 5 (Coniferous), 17 (Herbaceous), and 18 (Agricultural) are classified as green areas.
|
| 228 |
+
""")
|
| 229 |
+
|
| 230 |
+
with st.expander("🙏 Acknowledgments", expanded=False):
|
| 231 |
+
st.markdown("""
|
| 232 |
+
- [CorrelAid](https://correlaid.org/) – Data-for-good community
|
| 233 |
+
- [OpenNRW](https://www.opengeodata.nrw.de/) – Open geospatial data
|
| 234 |
+
- [IGNF/FLAIR-Hub](https://huggingface.co/IGNF/FLAIR-HUB_LC-A_IR_swinbase-upernet) – Segmentation model
|
| 235 |
+
- [Stadt Köln](https://www.stadt-koeln.de/) – Open administrative data
|
| 236 |
+
""")
|
| 237 |
+
|
| 238 |
+
if not HF_TOKEN:
|
| 239 |
+
st.warning("⚠️ HF_TOKEN missing. Set in .env or Streamlit Secrets.")
|
| 240 |
+
|
| 241 |
+
# 2. Data Loading
|
| 242 |
+
gdf_quarters = load_quarters_with_stats()
|
| 243 |
+
gdf_boroughs = load_boroughs()
|
| 244 |
+
tile_mapping = get_tile_to_veedel_mapping()
|
| 245 |
+
available_tiles = list_available_tiles()
|
| 246 |
+
|
| 247 |
+
# 3. State Management
|
| 248 |
+
if 'selected_veedel' not in st.session_state: st.session_state['selected_veedel'] = "All"
|
| 249 |
+
if 'map_center' not in st.session_state: st.session_state['map_center'] = [50.9375, 6.9603] # Cologne
|
| 250 |
+
if 'map_zoom' not in st.session_state: st.session_state['map_zoom'] = 11
|
| 251 |
+
if 'map_click_counter' not in st.session_state: st.session_state['map_click_counter'] = 0
|
| 252 |
+
|
| 253 |
+
# --- Helper Functions ---
|
| 254 |
+
def update_zoom_for_veedel(veedel_name):
|
| 255 |
+
if veedel_name == "All":
|
| 256 |
+
st.session_state['map_center'] = [50.9375, 6.9603]
|
| 257 |
+
st.session_state['map_zoom'] = 10
|
| 258 |
+
elif gdf_quarters is not None and not gdf_quarters.empty:
|
| 259 |
+
match = gdf_quarters[gdf_quarters['name'] == veedel_name]
|
| 260 |
+
if not match.empty:
|
| 261 |
+
centroid = match.geometry.centroid.iloc[0]
|
| 262 |
+
st.session_state['map_center'] = [centroid.y, centroid.x]
|
| 263 |
+
st.session_state['map_zoom'] = 14
|
| 264 |
+
|
| 265 |
+
def on_veedel_change():
|
| 266 |
+
sel = st.session_state['selected_veedel_widget']
|
| 267 |
+
st.session_state['selected_veedel'] = sel
|
| 268 |
+
update_zoom_for_veedel(sel)
|
| 269 |
+
|
| 270 |
+
# --- Layout ---
|
| 271 |
+
col_map, col_details = st.columns([0.65, 0.35], gap="medium")
|
| 272 |
+
|
| 273 |
+
with col_details:
|
| 274 |
+
st.markdown("### GreenCologne Analysis")
|
| 275 |
+
tab_opts, tab_stats = st.tabs(["🛠️ Options", "📊 Statistics"])
|
| 276 |
+
|
| 277 |
+
veedel_list = ["All"] + sorted(gdf_quarters['name'].unique().tolist()) if gdf_quarters is not None and not gdf_quarters.empty else ["All"]
|
| 278 |
+
|
| 279 |
+
# --- Tab 1: Options ---
|
| 280 |
+
with tab_opts:
|
| 281 |
+
# Sync Widget
|
| 282 |
+
if 'selected_veedel_widget' in st.session_state and st.session_state['selected_veedel'] != st.session_state['selected_veedel_widget']:
|
| 283 |
+
st.session_state['selected_veedel_widget'] = st.session_state['selected_veedel']
|
| 284 |
+
|
| 285 |
+
selected_veedel = st.selectbox(
|
| 286 |
+
"Select Quarter (Veedel/Stadtviertel):",
|
| 287 |
+
veedel_list,
|
| 288 |
+
key='selected_veedel_widget',
|
| 289 |
+
on_change=on_veedel_change,
|
| 290 |
+
index=veedel_list.index(st.session_state['selected_veedel']) if st.session_state['selected_veedel'] in veedel_list else 0
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
# Tile Logic - Only load tiles when a specific veedel is selected
|
| 294 |
+
tiles_to_display = []
|
| 295 |
+
if selected_veedel != "All":
|
| 296 |
+
veedel_tiles = set(tile_mapping.get(selected_veedel, []))
|
| 297 |
+
filtered_tiles = [t for t in veedel_tiles if t in available_tiles]
|
| 298 |
+
tiles_to_display = sorted(filtered_tiles)
|
| 299 |
+
|
| 300 |
+
# Layer Selection
|
| 301 |
+
layer_selection = st.radio(
|
| 302 |
+
"Select Layer:",
|
| 303 |
+
["Satellite", "Land Cover", "NDVI"],
|
| 304 |
+
index=2,
|
| 305 |
+
horizontal=True
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# Legends
|
| 309 |
+
st.markdown("#### Legends")
|
| 310 |
+
st.markdown("**Veedel Health (Mean NDVI)**")
|
| 311 |
+
st.markdown("""
|
| 312 |
+
<div style="background: linear-gradient(to right, #d73027, #ffffbf, #1a9850); height: 10px; width: 100%; border-radius: 5px;"></div>
|
| 313 |
+
<div style="display: flex; justify-content: space-between; font-size: 10px; margin-top: 2px;"><span>0.0 (Low)</span><span>0.3</span><span>0.6+ (High)</span></div>
|
| 314 |
+
<div style="font-size: 11px; color: #666; margin-bottom: 15px;">*Average vegetation index per district.</div>
|
| 315 |
+
""", unsafe_allow_html=True)
|
| 316 |
+
|
| 317 |
+
if layer_selection == "Land Cover":
|
| 318 |
+
st.markdown("**Land Cover Classes**")
|
| 319 |
+
legend_html = "<div style='display: grid; grid-template-columns: 1fr 1fr; gap: 5px; font-size: 12px;'>"
|
| 320 |
+
for cls_id, label in CLASS_LABELS.items():
|
| 321 |
+
if cls_id == 13: continue
|
| 322 |
+
c = FLAIR_COLORS[cls_id]
|
| 323 |
+
legend_html += f"<div style='display: flex; align-items: center;'><div style='width: 12px; height: 12px; background: rgba({c[0]},{c[1]},{c[2]},{c[3]/255}); margin-right: 5px; border: 1px solid #ccc;'></div>{label}</div>"
|
| 324 |
+
st.markdown(legend_html + "</div>", unsafe_allow_html=True)
|
| 325 |
+
|
| 326 |
+
elif layer_selection == "NDVI":
|
| 327 |
+
st.markdown("**Pixel Vegetation Index (NDVI)**")
|
| 328 |
+
st.markdown("""
|
| 329 |
+
<div style="background: linear-gradient(to right, #d73027, #ffffbf, #1a9850); height: 10px; width: 100%; border-radius: 5px;"></div>
|
| 330 |
+
<div style="display: flex; justify-content: space-between; font-size: 10px; margin-top: 2px;"><span>-0.4 (Water)</span><span>0.3</span><span>1.0 (Dense)</span></div>
|
| 331 |
+
""", unsafe_allow_html=True)
|
| 332 |
+
|
| 333 |
+
# --- Tab 2: Statistics ---
|
| 334 |
+
with tab_stats:
|
| 335 |
+
if gdf_quarters is not None and not gdf_quarters.empty:
|
| 336 |
+
title = "Cologne (All Veedels) Stats"
|
| 337 |
+
area_m2 = 0
|
| 338 |
+
total_area_m2 = 1
|
| 339 |
+
class_data_source = None
|
| 340 |
+
|
| 341 |
+
if selected_veedel != "All":
|
| 342 |
+
row = gdf_quarters[gdf_quarters['name'] == selected_veedel]
|
| 343 |
+
if not row.empty:
|
| 344 |
+
title = f"{selected_veedel} Stats"
|
| 345 |
+
area_m2 = row['green_area_m2'].values[0] if 'green_area_m2' in row else 0
|
| 346 |
+
total_area_m2 = row['Shape_Area'].values[0] if 'Shape_Area' in row else 1
|
| 347 |
+
class_data_source = row
|
| 348 |
+
else:
|
| 349 |
+
st.warning(f"No stats for {selected_veedel}")
|
| 350 |
+
else:
|
| 351 |
+
area_m2 = gdf_quarters['green_area_m2'].sum() if 'green_area_m2' in gdf_quarters else 0
|
| 352 |
+
total_area_m2 = gdf_quarters['Shape_Area'].sum() if 'Shape_Area' in gdf_quarters else 1
|
| 353 |
+
class_cols = [c for c in gdf_quarters.columns if str(c).startswith('area_')]
|
| 354 |
+
if class_cols:
|
| 355 |
+
class_data_source = pd.DataFrame([{c: gdf_quarters[c].sum() for c in class_cols}])
|
| 356 |
+
|
| 357 |
+
st.markdown(f"#### {title}")
|
| 358 |
+
c1, c2 = st.columns(2)
|
| 359 |
+
c1.metric("Green Area", f"{(area_m2/10000):.2f} ha")
|
| 360 |
+
c2.metric("Green Coverage", f"{(area_m2/total_area_m2)*100:.1f}%")
|
| 361 |
+
st.divider()
|
| 362 |
+
|
| 363 |
+
if class_data_source is not None and not class_data_source.empty:
|
| 364 |
+
class_cols = [c for c in class_data_source.columns if str(c).startswith('area_')]
|
| 365 |
+
if class_cols:
|
| 366 |
+
class_data = class_data_source[class_cols].T.reset_index()
|
| 367 |
+
class_data.columns = ['class_col', 'area_m2']
|
| 368 |
+
class_data['class_id'] = pd.to_numeric(class_data['class_col'].str.replace('area_', '', regex=False), errors='coerce').fillna(0).astype(int)
|
| 369 |
+
class_data['class_name'] = class_data['class_id'].map(CLASS_LABELS)
|
| 370 |
+
class_data['color'] = class_data['class_id'].map(lambda x: f"rgba({FLAIR_COLORS[x][0]},{FLAIR_COLORS[x][1]},{FLAIR_COLORS[x][2]}, 1)")
|
| 371 |
+
class_data = class_data.sort_values(by='area_m2', ascending=False)
|
| 372 |
+
|
| 373 |
+
fig_pie = px.pie(
|
| 374 |
+
class_data,
|
| 375 |
+
names='class_name',
|
| 376 |
+
values='area_m2',
|
| 377 |
+
title="Land Cover Distribution",
|
| 378 |
+
color='class_name',
|
| 379 |
+
color_discrete_map={row['class_name']: row['color'] for _, row in class_data.iterrows()},
|
| 380 |
+
labels={'class_name': 'Land Cover', 'area_m2': 'Area'}
|
| 381 |
+
)
|
| 382 |
+
fig_pie.update_traces(
|
| 383 |
+
textposition='inside',
|
| 384 |
+
textinfo='percent',
|
| 385 |
+
hovertemplate='<b>%{label}</b><br>Area: %{value:,.0f} m² (%{percent})<extra></extra>'
|
| 386 |
+
)
|
| 387 |
+
st.plotly_chart(fig_pie, use_container_width=True)
|
| 388 |
+
else: st.info("No detailed land cover data.")
|
| 389 |
+
|
| 390 |
+
# --- Map View ---
|
| 391 |
+
with col_map:
|
| 392 |
+
# 1. Base Map
|
| 393 |
+
m = folium.Map(location=st.session_state['map_center'], zoom_start=st.session_state['map_zoom'], tiles="CartoDB positron", crs='EPSG3857')
|
| 394 |
+
|
| 395 |
+
# 2. Results: Districts
|
| 396 |
+
if gdf_boroughs is not None and not gdf_boroughs.empty:
|
| 397 |
+
folium.GeoJson(
|
| 398 |
+
gdf_boroughs, name="Districts",
|
| 399 |
+
style_function=lambda x: {'fillColor': 'none', 'color': '#333333', 'weight': 2, 'dashArray': '5, 5', 'fillOpacity': 0.0},
|
| 400 |
+
tooltip=folium.GeoJsonTooltip(fields=['name'], aliases=['Bezirk:'])
|
| 401 |
+
).add_to(m)
|
| 402 |
+
|
| 403 |
+
# 3. Quarters (Veedel)
|
| 404 |
+
if gdf_quarters is not None and not gdf_quarters.empty:
|
| 405 |
+
min_ndvi = gdf_quarters['ndvi_mean'].min() if 'ndvi_mean' in gdf_quarters else 0
|
| 406 |
+
max_ndvi = gdf_quarters['ndvi_mean'].max() if 'ndvi_mean' in gdf_quarters else 0.6
|
| 407 |
+
if pd.isna(min_ndvi): min_ndvi = 0
|
| 408 |
+
if pd.isna(max_ndvi): max_ndvi = 0.6
|
| 409 |
+
|
| 410 |
+
def get_style(feature):
|
| 411 |
+
name = feature['properties']['name']
|
| 412 |
+
is_sel = (selected_veedel != "All" and name == selected_veedel)
|
| 413 |
+
val = feature['properties'].get('ndvi_mean')
|
| 414 |
+
|
| 415 |
+
fill_color = 'gray'
|
| 416 |
+
if is_sel: fill_color = '#ffff00'
|
| 417 |
+
elif val is not None and not pd.isna(val):
|
| 418 |
+
norm = max(0, min(1, (val - min_ndvi) / (max_ndvi - min_ndvi + 1e-9)))
|
| 419 |
+
fill_color = mcolors.to_hex(plt.get_cmap('RdYlGn')(norm))
|
| 420 |
+
|
| 421 |
+
return {
|
| 422 |
+
'fillColor': fill_color,
|
| 423 |
+
'color': 'black' if is_sel else '#666666',
|
| 424 |
+
'weight': 3 if is_sel else 1,
|
| 425 |
+
'fillOpacity': 0.0 if is_sel else 0.6
|
| 426 |
+
}
|
| 427 |
+
|
| 428 |
+
folium.GeoJson(
|
| 429 |
+
gdf_quarters, name="Veedel (NDVI)", style_function=get_style,
|
| 430 |
+
tooltip=folium.GeoJsonTooltip(
|
| 431 |
+
fields=['name', 'green_area_m2', 'green_pct', 'ndvi_mean'],
|
| 432 |
+
aliases=['Veedel:', 'Green Area (m²):', 'Green Coverage (%):', 'Mean NDVI:'],
|
| 433 |
+
localize=True, fmt='.2f'
|
| 434 |
+
)
|
| 435 |
+
).add_to(m)
|
| 436 |
+
|
| 437 |
+
# 4. Tiles Grid (Mosaic)
|
| 438 |
+
if tiles_to_display:
|
| 439 |
+
with st.spinner(f"Loading {len(tiles_to_display)} tiles..."):
|
| 440 |
+
mosaic_img, mosaic_bounds = get_mosaic_data_remote(tiles_to_display, layer_selection)
|
| 441 |
+
if mosaic_img is not None and mosaic_bounds:
|
| 442 |
+
folium.raster_layers.ImageOverlay(
|
| 443 |
+
image=mosaic_img, bounds=mosaic_bounds,
|
| 444 |
+
opacity=0.8 if "Land Cover" in layer_selection else 1.0,
|
| 445 |
+
name=f"Mosaic - {layer_selection}", control=False
|
| 446 |
+
).add_to(m)
|
| 447 |
+
|
| 448 |
+
folium.LayerControl().add_to(m)
|
| 449 |
+
|
| 450 |
+
# 5. Click Logic (Hybrid)
|
| 451 |
+
map_key = f"map_{st.session_state['selected_veedel']}_{st.session_state['map_zoom']}_{st.session_state['map_click_counter']}"
|
| 452 |
+
map_output = st_folium(m, width=None, height=700, key=map_key, use_container_width=True, returned_objects=["last_object_clicked", "last_clicked"])
|
| 453 |
+
|
| 454 |
+
clicked_name_final = None
|
| 455 |
+
if map_output:
|
| 456 |
+
# A: Check Object Property
|
| 457 |
+
if map_output.get('last_object_clicked'):
|
| 458 |
+
props = map_output['last_object_clicked'].get('properties', {})
|
| 459 |
+
if props and 'name' in props: clicked_name_final = props['name']
|
| 460 |
+
|
| 461 |
+
# B: Spatial Query Fallback
|
| 462 |
+
if not clicked_name_final and map_output.get('last_clicked'):
|
| 463 |
+
lat = map_output['last_clicked']['lat']
|
| 464 |
+
lng = map_output['last_clicked']['lng']
|
| 465 |
+
if lat and lng and gdf_quarters is not None:
|
| 466 |
+
p = Point(lng, lat)
|
| 467 |
+
matches = gdf_quarters[gdf_quarters.geometry.contains(p)]
|
| 468 |
+
if not matches.empty: clicked_name_final = matches['name'].iloc[0]
|
| 469 |
+
|
| 470 |
+
if clicked_name_final and clicked_name_final in veedel_list and clicked_name_final != st.session_state['selected_veedel']:
|
| 471 |
+
st.session_state['selected_veedel'] = clicked_name_final
|
| 472 |
+
update_zoom_for_veedel(clicked_name_final)
|
| 473 |
+
st.session_state['map_click_counter'] += 1
|
| 474 |
+
st.rerun()
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit>=1.28.0
|
| 2 |
+
streamlit-folium>=0.15.0
|
| 3 |
+
geopandas>=0.14.0
|
| 4 |
+
pandas>=2.0.0
|
| 5 |
+
duckdb>=0.9.0
|
| 6 |
+
rasterio>=1.3.0
|
| 7 |
+
huggingface_hub>=0.19.0
|
| 8 |
+
matplotlib>=3.7.0
|
| 9 |
+
plotly>=5.18.0
|
| 10 |
+
folium>=0.15.0
|
| 11 |
+
shapely>=2.0.0
|
| 12 |
+
python-dotenv>=1.0.0
|
| 13 |
+
pyarrow>=14.0.0
|
utils.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import duckdb
|
| 4 |
+
import rasterio
|
| 5 |
+
from rasterio.mask import mask
|
| 6 |
+
from rasterio.merge import merge
|
| 7 |
+
from rasterio.warp import calculate_default_transform, reproject, Resampling
|
| 8 |
+
from rasterio.crs import CRS
|
| 9 |
+
import numpy as np
|
| 10 |
+
import matplotlib.colors as mcolors
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
from shapely.geometry import box
|
| 13 |
+
import geopandas as gpd
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
|
| 16 |
+
# --- Constants ---
|
| 17 |
+
DATA_DIR = Path("data")
|
| 18 |
+
STATS_FILE = DATA_DIR / "stats" / "extended_stats.parquet"
|
| 19 |
+
QUARTERS_FILE = DATA_DIR / "boundaries" / "Stadtviertel.parquet"
|
| 20 |
+
BOROUGHS_FILE = DATA_DIR / "boundaries" / "Stadtbezirke.parquet"
|
| 21 |
+
PROCESSED_DIR = DATA_DIR / "processed"
|
| 22 |
+
TILES_METADATA_FILE = DATA_DIR / "metadata" / "cologne_tiles.csv"
|
| 23 |
+
|
| 24 |
+
FLAIR_COLORS = {
|
| 25 |
+
0: [206, 112, 121, 255], # Building
|
| 26 |
+
1: [185, 226, 212, 255], # Greenhouse
|
| 27 |
+
2: [98, 208, 255, 255], # Swimming pool
|
| 28 |
+
3: [166, 170, 183, 255], # Impervious surface
|
| 29 |
+
4: [152, 119, 82, 255], # Pervious surface
|
| 30 |
+
5: [187, 176, 150, 255], # Bare soil
|
| 31 |
+
6: [51, 117, 161, 255], # Water
|
| 32 |
+
7: [233, 239, 254, 255], # Snow
|
| 33 |
+
8: [140, 215, 106, 255], # Herbaceous vegetation
|
| 34 |
+
9: [222, 207, 85, 255], # Agricultural land
|
| 35 |
+
10: [208, 163, 73, 255], # Plowed land
|
| 36 |
+
11: [176, 130, 144, 255], # Vineyard
|
| 37 |
+
12: [76, 145, 41, 255], # Deciduous
|
| 38 |
+
13: [18, 100, 33, 255], # Coniferous
|
| 39 |
+
14: [181, 195, 53, 255], # Brushwood
|
| 40 |
+
15: [228, 142, 77, 255], # Clear cut
|
| 41 |
+
16: [34, 34, 34, 255], # Ligneous
|
| 42 |
+
17: [34, 34, 34, 255], # Mixed
|
| 43 |
+
18: [34, 34, 34, 255], # Other
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
CLASS_LABELS = {
|
| 47 |
+
0: 'Building', 1: 'Greenhouse', 2: 'Swimming pool',
|
| 48 |
+
3: 'Impervious surface', 4: 'Pervious surface', 5: 'Bare soil',
|
| 49 |
+
6: 'Water', 7: 'Snow', 8: 'Herbaceous vegetation',
|
| 50 |
+
9: 'Agricultural land', 10: 'Plowed land', 11: 'Vineyard',
|
| 51 |
+
12: 'Deciduous', 13: 'Coniferous', 14: 'Brushwood',
|
| 52 |
+
15: 'Clear cut', 16: 'Ligneous', 17: 'Mixed', 18: 'Other'
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
# --- Data Loading ---
|
| 56 |
+
@st.cache_data
|
| 57 |
+
def load_quarters_with_stats():
|
| 58 |
+
# Load Boundaries
|
| 59 |
+
if not QUARTERS_FILE.exists(): return None
|
| 60 |
+
gdf = gpd.read_parquet(QUARTERS_FILE)
|
| 61 |
+
if gdf.crs != "EPSG:4326": gdf = gdf.to_crs("EPSG:4326")
|
| 62 |
+
|
| 63 |
+
# Load Stats
|
| 64 |
+
try:
|
| 65 |
+
con = duckdb.connect()
|
| 66 |
+
df_s = con.execute(f"SELECT * FROM '{STATS_FILE}'").df()
|
| 67 |
+
con.close()
|
| 68 |
+
|
| 69 |
+
# Merge
|
| 70 |
+
if 'name' in gdf.columns and 'name' in df_s.columns:
|
| 71 |
+
gdf = gdf.merge(df_s, on='name', how='left')
|
| 72 |
+
if 'green_area_m2' in gdf.columns:
|
| 73 |
+
gdf['green_area_m2'] = gdf['green_area_m2'].fillna(0)
|
| 74 |
+
|
| 75 |
+
# Calculate Percentage (Critical)
|
| 76 |
+
if 'green_area_m2' in gdf.columns and 'Shape_Area' in gdf.columns:
|
| 77 |
+
gdf['green_pct'] = (gdf['green_area_m2'] / gdf['Shape_Area']) * 100
|
| 78 |
+
else:
|
| 79 |
+
gdf['green_pct'] = 0.0
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
st.error(f"Error loading stats: {e}")
|
| 83 |
+
|
| 84 |
+
return gdf
|
| 85 |
+
|
| 86 |
+
@st.cache_data
|
| 87 |
+
def load_boroughs():
|
| 88 |
+
if not BOROUGHS_FILE.exists(): return None
|
| 89 |
+
gdf = gpd.read_parquet(BOROUGHS_FILE)
|
| 90 |
+
if gdf.crs != "EPSG:4326": gdf = gdf.to_crs("EPSG:4326")
|
| 91 |
+
if 'STB_NAME' in gdf.columns: gdf = gdf.rename(columns={'STB_NAME': 'name'})
|
| 92 |
+
return gdf
|
| 93 |
+
|
| 94 |
+
@st.cache_data
|
| 95 |
+
def get_tile_to_veedel_mapping():
|
| 96 |
+
if not TILES_METADATA_FILE.exists() or not QUARTERS_FILE.exists(): return {}
|
| 97 |
+
tiles_df = pd.read_csv(TILES_METADATA_FILE)
|
| 98 |
+
geometries = []
|
| 99 |
+
for _, row in tiles_df.iterrows():
|
| 100 |
+
e, n = row['Koordinatenursprung_East'], row['Koordinatenursprung_North']
|
| 101 |
+
geometries.append(box(e, n, e + 1000, n + 1000))
|
| 102 |
+
tiles_gdf = gpd.GeoDataFrame(tiles_df, geometry=geometries, crs="EPSG:25832")
|
| 103 |
+
|
| 104 |
+
quarters_gdf = gpd.read_parquet(QUARTERS_FILE)
|
| 105 |
+
if quarters_gdf.crs != "EPSG:25832": quarters_gdf = quarters_gdf.to_crs("EPSG:25832")
|
| 106 |
+
|
| 107 |
+
joined = gpd.sjoin(tiles_gdf, quarters_gdf, how="inner", predicate="intersects")
|
| 108 |
+
return joined.groupby('name')['Kachelname'].apply(list).to_dict()
|
| 109 |
+
|
| 110 |
+
# --- Mosaic Logic (Shared) ---
|
| 111 |
+
def process_mosaic(sources, layer_type):
|
| 112 |
+
"""
|
| 113 |
+
Core Mosaic Logic: Merges, Reprojects, and Colorizes open rasterio sources.
|
| 114 |
+
Aguments:
|
| 115 |
+
sources: List of open rasterio DatasetReader objects (file or memory).
|
| 116 |
+
layer_type: String enum ["Satellite", "Land Cover", "NDVI"]
|
| 117 |
+
"""
|
| 118 |
+
try:
|
| 119 |
+
if not sources: return None, None
|
| 120 |
+
|
| 121 |
+
# 1. Mosaic (Native CRS)
|
| 122 |
+
# We assume sources are compatible (same bands, dtype). Merge handles overlap.
|
| 123 |
+
mosaic, out_trans = merge(sources)
|
| 124 |
+
|
| 125 |
+
# 2. Reproject to WGS84
|
| 126 |
+
src_crs = CRS.from_epsg(25832) # Assuming all inputs are 25832
|
| 127 |
+
src_height, src_width = mosaic.shape[1], mosaic.shape[2]
|
| 128 |
+
dst_crs = CRS.from_epsg(4326)
|
| 129 |
+
|
| 130 |
+
dst_transform, dst_width, dst_height = calculate_default_transform(
|
| 131 |
+
src_crs, dst_crs, src_width, src_height,
|
| 132 |
+
*rasterio.transform.array_bounds(src_height, src_width, out_trans)
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
count = mosaic.shape[0]
|
| 136 |
+
if layer_type == "Satellite" and count < 3: count = 1
|
| 137 |
+
|
| 138 |
+
dst_array = np.zeros((count, dst_height, dst_width), dtype=mosaic.dtype)
|
| 139 |
+
|
| 140 |
+
reproject(
|
| 141 |
+
source=mosaic, destination=dst_array,
|
| 142 |
+
src_transform=out_trans, src_crs=src_crs,
|
| 143 |
+
dst_transform=dst_transform, dst_crs=dst_crs,
|
| 144 |
+
resampling=Resampling.nearest
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# 3. Visualization Post-Processing
|
| 148 |
+
final_image = None
|
| 149 |
+
|
| 150 |
+
if layer_type == "Satellite":
|
| 151 |
+
if dst_array.shape[0] >= 3:
|
| 152 |
+
rgb = np.moveaxis(dst_array[:3], 0, -1)
|
| 153 |
+
|
| 154 |
+
# Handle uint16
|
| 155 |
+
if rgb.dtype == 'uint16':
|
| 156 |
+
p2, p98 = np.percentile(rgb[rgb > 0], (2, 98))
|
| 157 |
+
rgb = np.clip((rgb - p2) / (p98 - p2), 0, 1)
|
| 158 |
+
final_image = (rgb * 255).astype(np.uint8)
|
| 159 |
+
else:
|
| 160 |
+
final_image = rgb
|
| 161 |
+
|
| 162 |
+
# Alpha (Create transparency for 0 values)
|
| 163 |
+
alpha = np.any(final_image > 0, axis=2).astype(np.uint8) * 255
|
| 164 |
+
final_image = np.dstack((final_image, alpha))
|
| 165 |
+
|
| 166 |
+
elif layer_type == "Land Cover":
|
| 167 |
+
mask_data = dst_array[0]
|
| 168 |
+
rgba = np.zeros((mask_data.shape[0], mask_data.shape[1], 4), dtype=np.uint8)
|
| 169 |
+
for cls_id, color in FLAIR_COLORS.items():
|
| 170 |
+
rgba[mask_data == cls_id] = color
|
| 171 |
+
final_image = rgba
|
| 172 |
+
|
| 173 |
+
elif layer_type == "NDVI":
|
| 174 |
+
ndvi = dst_array[0].astype('float32')
|
| 175 |
+
norm = mcolors.Normalize(vmin=-0.4, vmax=1, clip=True)(ndvi)
|
| 176 |
+
cmap = plt.get_cmap('RdYlGn')
|
| 177 |
+
final_image_float = cmap(norm)
|
| 178 |
+
final_image = (final_image_float * 255).astype(np.uint8)
|
| 179 |
+
|
| 180 |
+
# Calculate Bounds for Leaflet
|
| 181 |
+
dst_bounds = rasterio.transform.array_bounds(dst_height, dst_width, dst_transform)
|
| 182 |
+
folium_bounds = [[dst_bounds[1], dst_bounds[0]], [dst_bounds[3], dst_bounds[2]]]
|
| 183 |
+
|
| 184 |
+
return final_image, folium_bounds
|
| 185 |
+
|
| 186 |
+
except Exception as e:
|
| 187 |
+
# st.error(f"Mosaic Process Error: {e}")
|
| 188 |
+
return None, None
|
| 189 |
+
|
| 190 |
+
def get_mosaic_data_local(tile_names, layer_type):
|
| 191 |
+
"""
|
| 192 |
+
Local IO Wrapper for Mosaic Logic
|
| 193 |
+
"""
|
| 194 |
+
sources = []
|
| 195 |
+
try:
|
| 196 |
+
for tile_name in tile_names:
|
| 197 |
+
# Determine Suffix
|
| 198 |
+
suffix = "_mask" if ("Land Cover" in layer_type) else "_ndvi"
|
| 199 |
+
if layer_type == "Satellite": suffix = ""
|
| 200 |
+
|
| 201 |
+
# Paths
|
| 202 |
+
opt_path = DATA_DIR / "web_optimized" / f"{tile_name}{suffix}.tif"
|
| 203 |
+
raw_path = DATA_DIR / "raw" / f"{tile_name}.jp2"
|
| 204 |
+
processed_mask = PROCESSED_DIR / f"{tile_name}_mask.tif"
|
| 205 |
+
processed_ndvi = PROCESSED_DIR / f"{tile_name}_ndvi.tif"
|
| 206 |
+
|
| 207 |
+
path_to_open = None
|
| 208 |
+
if layer_type == "Satellite":
|
| 209 |
+
if opt_path.exists(): path_to_open = opt_path
|
| 210 |
+
elif raw_path.exists(): path_to_open = raw_path
|
| 211 |
+
elif "Land Cover" in layer_type:
|
| 212 |
+
if opt_path.exists(): path_to_open = opt_path
|
| 213 |
+
elif processed_mask.exists(): path_to_open = processed_mask
|
| 214 |
+
elif layer_type == "NDVI":
|
| 215 |
+
if opt_path.exists(): path_to_open = opt_path
|
| 216 |
+
elif processed_ndvi.exists(): path_to_open = processed_ndvi
|
| 217 |
+
|
| 218 |
+
if path_to_open:
|
| 219 |
+
sources.append(rasterio.open(path_to_open))
|
| 220 |
+
|
| 221 |
+
result = process_mosaic(sources, layer_type)
|
| 222 |
+
|
| 223 |
+
# Cleanup
|
| 224 |
+
for s in sources: s.close()
|
| 225 |
+
|
| 226 |
+
return result
|
| 227 |
+
|
| 228 |
+
except Exception as e:
|
| 229 |
+
for s in sources: s.close()
|
| 230 |
+
return None, None
|