autochrome-gen-cui / python.py
airplane194's picture
commit
b3d03a7
raw
history blame
11.9 kB
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import spaces
import numpy as np
from PIL import Image
# from comfy import model_management
from nodes import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_1
from comfy_extras.nodes_custom_sampler import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_2
from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_3
from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_4
from comfy_extras.nodes_model_advanced import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_5
from comfy_extras.nodes_flux import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_6
from torchvision.transforms.functional import to_pil_image
from PIL import Image
import numpy as np
import time
from huggingface_hub import hf_hub_download
token = os.getenv("HF_TKN")
# Merge both mappings
NODE_CLASS_MAPPINGS = {**NODE_CLASS_MAPPINGS_1, **NODE_CLASS_MAPPINGS_2, **NODE_CLASS_MAPPINGS_3, **NODE_CLASS_MAPPINGS_4, **NODE_CLASS_MAPPINGS_5, **NODE_CLASS_MAPPINGS_6}
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="flux1-dev.safetensors", local_dir="models/unet", token = token)
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae", token = token)
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders", token = token)
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders", token = token)
def preprocess_image_tensor(image):
# If image has a batch dimension (shape: [1, C, H, W]), remove it.
if image.ndim == 4 and image.shape[0] == 1:
image = image.squeeze(0)
# If image is in channels-first format (i.e. [C, H, W]) and has 3 or 4 channels,
# convert it to channels-last format ([H, W, C]).
if image.ndim == 3 and image.shape[0] in [1, 3, 4]:
image = image.permute(1, 2, 0)
# Ensure the image values are between 0 and 1. Then scale them to [0, 255].
image = image.detach().cpu().numpy()
image = np.clip(image, 0, 1) * 255
# Convert to unsigned 8-bit integer type.
image = image.astype(np.uint8)
return image
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is o of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
def preprocess_image_tensor(image):
# If image has a batch dimension (shape: [1, C, H, W]), remove it.
if image.ndim == 4 and image.shape[0] == 1:
image = image.squeeze(0)
# If image is in channels-first format (i.e. [C, H, W]) and has 3 or 4 channels,
# convert it to channels-last format ([H, W, C]).
if image.ndim == 3 and image.shape[0] in [1, 3, 4]:
image = image.permute(1, 2, 0)
# Ensure the image values are between 0 and 1. Then scale them to [0, 255].
image = image.detach().cpu().numpy()
image = np.clip(image, 0, 1) * 255
# Convert to unsigned 8-bit integer type.
image = image.astype(np.uint8)
return image
add_comfyui_directory_to_sys_path()
import_custom_nodes()
# add_extra_model_paths()
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_11 = dualcliploader.load_clip(
clip_name1="t5xxl_fp16.safetensors",
clip_name2="clip_l.safetensors",
type="flux",
device="default",
)
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
cliptextencode_6 = cliptextencode.encode(
text="Photo on a small glass panel. Color. Photo of trees with a body of water in the front and moutain in the background.",
clip=get_value_at_index(dualcliploader_11, 0),
)
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vaeloader_10 = vaeloader.load_vae(vae_name="ae.safetensors")
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
unetloader_12 = unetloader.load_unet(
unet_name="flux1-dev.safetensors", weight_dtype="default"
)
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
ksamplerselect_16 = ksamplerselect.get_sampler(sampler_name="dpmpp_2m")
# randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
# randomnoise_25 = randomnoise.get_noise(noise_seed='42')
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only(
lora_name='lora_weight_rank_32_alpha_32.safetensors',
strength_model=1,
model=get_value_at_index(unetloader_12, 0),
)
cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]()
cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio(
width=1024,
height=1024,
aspect_ratio="4:3 landscape 1152x896",
swap_dimensions="Off",
upscale_factor=1.5,
batch_size=1,
)
modelsamplingflux = NODE_CLASS_MAPPINGS["ModelSamplingFlux"]()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
# def model_loading():
# model_loaders = [dualcliploader_11, vaeloader_10, unetloader_12, loraloadermodelonly_72]
# valid_models = [
# getattr(loader[0], 'patcher', loader[0])
# for loader in model_loaders
# if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
# ]
# #Load the models
# # model_management.load_models_gpu(valid_models)
def generate_image(prompt,
guidance_scale,
aspect_ratio,
seed,
num_inference_steps,
lora_weight,
):
# print(seed)
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
cliptextencode_6 = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(dualcliploader_11, 0),
)
cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]()
cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio(
width=1024,
height=1024,
aspect_ratio=aspect_ratio,
swap_dimensions="Off",
upscale_factor=1.5,
batch_size=1,
)
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only(
lora_name=lora_weight,
strength_model=1,
model=get_value_at_index(unetloader_12, 0),
)
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
randomnoise_25 = randomnoise.get_noise(noise_seed=str(seed))
with torch.inference_mode():
for q in range(1):
modelsamplingflux_61 = modelsamplingflux.patch(
max_shift=1.15,
base_shift=0.5,
width=get_value_at_index(cr_sdxl_aspect_ratio_85, 0),
height=get_value_at_index(cr_sdxl_aspect_ratio_85, 1),
model=get_value_at_index(loraloadermodelonly_72, 0),
)
fluxguidance_60 = fluxguidance.append(
guidance=guidance_scale, conditioning=get_value_at_index(cliptextencode_6, 0)
)
basicguider_22 = basicguider.get_guider(
model=get_value_at_index(modelsamplingflux_61, 0),
conditioning=get_value_at_index(fluxguidance_60, 0),
)
basicscheduler_17 = basicscheduler.get_sigmas(
scheduler="sgm_uniform",
steps=num_inference_steps,
denoise=1,
model=get_value_at_index(modelsamplingflux_61, 0),
)
samplercustomadvanced_13 = samplercustomadvanced.sample(
noise=get_value_at_index(randomnoise_25, 0),
guider=get_value_at_index(basicguider_22, 0),
sampler=get_value_at_index(ksamplerselect_16, 0),
sigmas=get_value_at_index(basicscheduler_17, 0),
latent_image=get_value_at_index(cr_sdxl_aspect_ratio_85, 4),
)
vaedecode_8 = vaedecode.decode(
samples=get_value_at_index(samplercustomadvanced_13, 0),
vae=get_value_at_index(vaeloader_10, 0),
)
# saveimage_9 = saveimage.save_images(
# filename_prefix="image", images=get_value_at_index(vaedecode_8, 0)
# )
image_tensor = get_value_at_index(vaedecode_8, 0)
preprocessed_image = preprocess_image_tensor(image_tensor)
pil_image = Image.fromarray(preprocessed_image)
return pil_image, seed