File size: 11,908 Bytes
799d465
 
 
 
 
af8c1fd
81cec35
 
799d465
 
 
 
fa96107
d909487
 
8bb51aa
202caac
f446947
4f00e0c
d909487
799d465
af8c1fd
799d465
d909487
0e674ea
 
 
 
799d465
81cec35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
799d465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202caac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
799d465
 
 
 
 
 
 
89e0ec3
 
 
 
799d465
 
 
 
89e0ec3
 
799d465
 
 
 
 
 
 
89e0ec3
799d465
 
 
 
 
a643d17
 
799d465
 
 
89e0ec3
 
 
799d465
 
 
 
89e0ec3
 
 
 
 
 
799d465
 
 
 
 
 
 
 
6bc792b
799d465
89e0ec3
 
 
 
 
 
 
 
 
799d465
 
 
 
 
 
 
e7fedfd
799d465
89e0ec3
799d465
 
 
 
 
 
 
d8c229d
 
799d465
 
 
 
 
e7fedfd
 
2957199
e7fedfd
 
 
 
377cd30
799d465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb51aa
 
 
81cec35
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
#import spaces
import numpy as np
from PIL import Image
# from comfy import model_management
from nodes import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_1
from comfy_extras.nodes_custom_sampler import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_2
from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_3
from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_4
from comfy_extras.nodes_model_advanced import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_5
from comfy_extras.nodes_flux import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_6
from torchvision.transforms.functional import to_pil_image
from PIL import Image
import numpy as np
import time

from huggingface_hub import hf_hub_download
token =  os.getenv("HF_TKN")
# Merge both mappings
NODE_CLASS_MAPPINGS = {**NODE_CLASS_MAPPINGS_1, **NODE_CLASS_MAPPINGS_2, **NODE_CLASS_MAPPINGS_3, **NODE_CLASS_MAPPINGS_4, **NODE_CLASS_MAPPINGS_5, **NODE_CLASS_MAPPINGS_6}
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="flux1-dev.safetensors", local_dir="models/unet", token = token)
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae", token = token)
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders", token = token)
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders", token = token)

def preprocess_image_tensor(image):
    # If image has a batch dimension (shape: [1, C, H, W]), remove it.
    if image.ndim == 4 and image.shape[0] == 1:
        image = image.squeeze(0)
    # If image is in channels-first format (i.e. [C, H, W]) and has 3 or 4 channels,
    # convert it to channels-last format ([H, W, C]).
    if image.ndim == 3 and image.shape[0] in [1, 3, 4]:
        image = image.permute(1, 2, 0)
    # Ensure the image values are between 0 and 1. Then scale them to [0, 255].
    image = image.detach().cpu().numpy()
    image = np.clip(image, 0, 1) * 255
    # Convert to unsigned 8-bit integer type.
    image = image.astype(np.uint8)
    return image


def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    """Returns the value at the given index of a sequence or mapping.

    If the object is a sequence (like list or string), returns the value at the given index.
    If the object is a mapping (like a dictionary), returns the value at the index-th key.

    Some return a dictionary, in these cases, we look for the "results" key

    Args:
        obj (Union[Sequence, Mapping]): The object to retrieve the value from.
        index (int): The index of the value to retrieve.

    Returns:
        Any: The value at the given index.

    Raises:
        IndexError: If the index is o of bounds for the object and the object is not a mapping.
    """
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]


def find_path(name: str, path: str = None) -> str:
    """
    Recursively looks at parent folders starting from the given path until it finds the given name.
    Returns the path as a Path object if found, or None otherwise.
    """
    # If no path is given, use the current working directory
    if path is None:
        path = os.getcwd()

    # Check if the current directory contains the name
    if name in os.listdir(path):
        path_name = os.path.join(path, name)
        print(f"{name} found: {path_name}")
        return path_name

    # Get the parent directory
    parent_directory = os.path.dirname(path)

    # If the parent directory is the same as the current directory, we've reached the root and stop the search
    if parent_directory == path:
        return None

    # Recursively call the function with the parent directory
    return find_path(name, parent_directory)


def add_comfyui_directory_to_sys_path() -> None:
    """
    Add 'ComfyUI' to the sys.path
    """
    comfyui_path = find_path("ComfyUI")
    if comfyui_path is not None and os.path.isdir(comfyui_path):
        sys.path.append(comfyui_path)
        print(f"'{comfyui_path}' added to sys.path")


def add_extra_model_paths() -> None:
    """
    Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
    """
    try:
        from main import load_extra_path_config
    except ImportError:
        print(
            "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
        )
        from utils.extra_config import load_extra_path_config

    extra_model_paths = find_path("extra_model_paths.yaml")

    if extra_model_paths is not None:
        load_extra_path_config(extra_model_paths)
    else:
        print("Could not find the extra_model_paths config file.")


def import_custom_nodes() -> None:
    """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS

    This function sets up a new asyncio event loop, initializes the PromptServer,
    creates a PromptQueue, and initializes the custom nodes.
    """
    import asyncio
    import execution
    from nodes import init_extra_nodes
    import server

    # Creating a new event loop and setting it as the default loop
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)

    # Creating an instance of PromptServer with the loop
    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)

    # Initializing custom nodes
    init_extra_nodes()

def preprocess_image_tensor(image):
    # If image has a batch dimension (shape: [1, C, H, W]), remove it.
    if image.ndim == 4 and image.shape[0] == 1:
        image = image.squeeze(0)
    # If image is in channels-first format (i.e. [C, H, W]) and has 3 or 4 channels,
    # convert it to channels-last format ([H, W, C]).
    if image.ndim == 3 and image.shape[0] in [1, 3, 4]:
        image = image.permute(1, 2, 0)
    # Ensure the image values are between 0 and 1. Then scale them to [0, 255].
    image = image.detach().cpu().numpy()
    image = np.clip(image, 0, 1) * 255
    # Convert to unsigned 8-bit integer type.
    image = image.astype(np.uint8)
    return image



add_comfyui_directory_to_sys_path()
import_custom_nodes()
# add_extra_model_paths()
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
dualcliploader_11 = dualcliploader.load_clip(
    clip_name1="t5xxl_fp16.safetensors",
    clip_name2="clip_l.safetensors",
    type="flux",
    device="default",
)

cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
cliptextencode_6 = cliptextencode.encode(
    text="Photo on a small glass panel. Color. Photo of trees with a body of water in the front and moutain in the background.",
    clip=get_value_at_index(dualcliploader_11, 0),
)

vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
vaeloader_10 = vaeloader.load_vae(vae_name="ae.safetensors")

unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
unetloader_12 = unetloader.load_unet(
    unet_name="flux1-dev.safetensors", weight_dtype="default"
)

ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
ksamplerselect_16 = ksamplerselect.get_sampler(sampler_name="dpmpp_2m")

# randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
# randomnoise_25 = randomnoise.get_noise(noise_seed='42')

loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only(
    lora_name='lora_weight_rank_32_alpha_32.safetensors',
    strength_model=1,
    model=get_value_at_index(unetloader_12, 0),
)

cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]()
cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio(
    width=1024,
    height=1024,
    aspect_ratio="4:3 landscape 1152x896",
    swap_dimensions="Off",
    upscale_factor=1.5,
    batch_size=1,
)

modelsamplingflux = NODE_CLASS_MAPPINGS["ModelSamplingFlux"]()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()

# def model_loading():
#     model_loaders = [dualcliploader_11, vaeloader_10, unetloader_12, loraloadermodelonly_72]
#     valid_models = [
#     getattr(loader[0], 'patcher', loader[0]) 
#     for loader in model_loaders
#     if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
# ]
#     #Load the models
#     # model_management.load_models_gpu(valid_models)
    

def generate_image(prompt,
        guidance_scale,
        aspect_ratio,
        seed,
        num_inference_steps,
        lora_weight,
        ):
    # print(seed)
    cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
    cliptextencode_6 = cliptextencode.encode(
        text=prompt,
        clip=get_value_at_index(dualcliploader_11, 0),
    )
    cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]()
    cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio(
        width=1024,
        height=1024,
        aspect_ratio=aspect_ratio,
        swap_dimensions="Off",
        upscale_factor=1.5,
        batch_size=1,
    )
    loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
    loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only(
        lora_name=lora_weight,
        strength_model=1,
        model=get_value_at_index(unetloader_12, 0),
    )
    randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
    randomnoise_25 = randomnoise.get_noise(noise_seed=str(seed))
    with torch.inference_mode():
        for q in range(1):
            modelsamplingflux_61 = modelsamplingflux.patch(
                max_shift=1.15,
                base_shift=0.5,
                width=get_value_at_index(cr_sdxl_aspect_ratio_85, 0),
                height=get_value_at_index(cr_sdxl_aspect_ratio_85, 1),
                model=get_value_at_index(loraloadermodelonly_72, 0),
            )

            fluxguidance_60 = fluxguidance.append(
                guidance=guidance_scale, conditioning=get_value_at_index(cliptextencode_6, 0)
            )

            basicguider_22 = basicguider.get_guider(
                model=get_value_at_index(modelsamplingflux_61, 0),
                conditioning=get_value_at_index(fluxguidance_60, 0),
            )

            basicscheduler_17 = basicscheduler.get_sigmas(
                scheduler="sgm_uniform",
                steps=num_inference_steps,
                denoise=1,
                model=get_value_at_index(modelsamplingflux_61, 0),
            )

            samplercustomadvanced_13 = samplercustomadvanced.sample(
                noise=get_value_at_index(randomnoise_25, 0),
                guider=get_value_at_index(basicguider_22, 0),
                sampler=get_value_at_index(ksamplerselect_16, 0),
                sigmas=get_value_at_index(basicscheduler_17, 0),
                latent_image=get_value_at_index(cr_sdxl_aspect_ratio_85, 4),
            )

            vaedecode_8 = vaedecode.decode(
                samples=get_value_at_index(samplercustomadvanced_13, 0),
                vae=get_value_at_index(vaeloader_10, 0),
            )
            # saveimage_9 = saveimage.save_images(
            #     filename_prefix="image", images=get_value_at_index(vaedecode_8, 0)
            # )
            image_tensor = get_value_at_index(vaedecode_8, 0)
            preprocessed_image = preprocess_image_tensor(image_tensor)
            pil_image = Image.fromarray(preprocessed_image)
            return pil_image, seed