File size: 10,619 Bytes
dbe2c62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# ============================================================
# Config/ModelLoader.py  β€”  Official, unified, complete
# - Manage Encoder/Chunker (SentenceTransformer) and Summarizer (Seq2Seq)
# - Auto-download to local cache when missing
# - GPU/CPU selection with CUDA checks
# - Consistent class-based API
# ============================================================

import os
import torch
from typing import List, Tuple, Optional, Dict, Any

from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM


class ModelLoader:
    """
    Unified model manager:
      - Encoder (SentenceTransformer)
      - Chunker (SentenceTransformer)
      - Summarizer (Seq2Seq: T5/BART/vit5)
    Provides:
      - load_encoder(name, cache)
      - load_chunker(name, cache)
      - load_summarizer(name, cache)
      - summarize(text, max_len, min_len)
      - summarize_batch(texts, max_len, min_len)
      - print_devices()
    """

    # -----------------------------
    # Construction / State
    # -----------------------------
    def __init__(self, prefer_cuda: bool = True) -> None:
        self.models: Dict[str, Any] = {}
        self.tokenizers: Dict[str, Any] = {}
        self.devices: Dict[str, torch.device] = {}
        self.prefer_cuda = prefer_cuda

    # -----------------------------
    # Device helpers
    # -----------------------------
    @staticmethod
    def _cuda_check() -> None:
        print("CUDA supported:", torch.cuda.is_available())
        print("Number of GPUs:", torch.cuda.device_count())
        if torch.cuda.is_available():
            print("Current GPU:", torch.cuda.get_device_name(0))
            print("Capability:", torch.cuda.get_device_capability(0))
            print("CUDA version (PyTorch):", torch.version.cuda)
            print("cuDNN version:", torch.backends.cudnn.version())
        else:
            print("⚠️ CUDA not available, using CPU.")

    def _get_device(self) -> torch.device:
        if self.prefer_cuda and torch.cuda.is_available():
            return torch.device("cuda")
        return torch.device("cpu")

    @staticmethod
    def _ensure_dir(path: Optional[str]) -> None:
        if path:
            os.makedirs(path, exist_ok=True)

    # -----------------------------
    # SentenceTransformer (Encoder/Chunker)
    # -----------------------------
    @staticmethod
    def _ensure_cached_sentence_model(model_name: str, cache_path: str) -> str:
        """
        Ensure SentenceTransformer exists under cache_path.
        Rebuild structure if config missing.
        """
        if not os.path.exists(cache_path):
            print(f"πŸ“₯ Downloading SentenceTransformer to: {cache_path}")
            model = SentenceTransformer(model_name)
            model.save(cache_path)
            print("βœ… Cached SentenceTransformer successfully.")
        else:
            cfg = os.path.join(cache_path, "config_sentence_transformers.json")
            if not os.path.exists(cfg):
                print("βš™οΈ Rebuilding SentenceTransformer cache structure...")
                tmp = SentenceTransformer(model_name)
                tmp.save(cache_path)
        return cache_path

    def _load_sentence_model(self, model_name: str, cache_path: Optional[str]) -> Tuple[SentenceTransformer, torch.device]:
        device = self._get_device()
        print(f"\nπŸ” Loading SentenceTransformer ({model_name}) on {device} ...")
        self._cuda_check()

        if cache_path:
            self._ensure_dir(cache_path)
            self._ensure_cached_sentence_model(model_name, cache_path)
            model = SentenceTransformer(cache_path, device=str(device))
            print(f"πŸ“‚ Loaded from cache: {cache_path}")
        else:
            model = SentenceTransformer(model_name, device=str(device))

        print("βœ… SentenceTransformer ready.")
        return model, device

    # Public APIs for SentenceTransformer
    def load_encoder(self, name: str, cache: Optional[str] = None) -> Tuple[SentenceTransformer, torch.device]:
        model, device = self._load_sentence_model(name, cache)
        self.models["encoder"] = model
        self.devices["encoder"] = device
        return model, device

    def load_chunker(self, name: str, cache: Optional[str] = None) -> Tuple[SentenceTransformer, torch.device]:
        model, device = self._load_sentence_model(name, cache)
        self.models["chunker"] = model
        self.devices["chunker"] = device
        return model, device

    # -----------------------------
    # Summarizer (Seq2Seq: T5/BART/vit5)
    # -----------------------------
    @staticmethod
    def _has_hf_config(cache_dir: str) -> bool:
        return os.path.exists(os.path.join(cache_dir, "config.json"))

    @staticmethod
    def _download_and_cache_summarizer(model_name: str, cache_dir: str) -> None:
        """
        Download HF model + tokenizer and save_pretrained to cache_dir.
        """
        print("βš™οΈ Cache missing β€” downloading model from Hugging Face...")
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
        os.makedirs(cache_dir, exist_ok=True)
        tokenizer.save_pretrained(cache_dir)
        model.save_pretrained(cache_dir)
        print(f"βœ… Summarizer cached at: {cache_dir}")

    def _load_summarizer_core(self, model_or_dir: str, device: torch.device) -> Tuple[AutoTokenizer, AutoModelForSeq2SeqLM]:
        tokenizer = AutoTokenizer.from_pretrained(model_or_dir)
        model = AutoModelForSeq2SeqLM.from_pretrained(model_or_dir).to(device)
        return tokenizer, model

    def load_summarizer(self, name: str, cache: Optional[str] = None) -> Tuple[AutoTokenizer, AutoModelForSeq2SeqLM, torch.device]:
        """
        Load Seq2Seq model; auto-download if cache dir missing or invalid.
        """
        device = self._get_device()
        print(f"\nπŸ” Initializing summarizer ({name}) on {device} ...")
        self._cuda_check()

        if cache:
            self._ensure_dir(cache)
            if not self._has_hf_config(cache):
                self._download_and_cache_summarizer(name, cache)
            print("πŸ“‚ Loading summarizer from local cache...")
            tok, mdl = self._load_summarizer_core(cache, device)
        else:
            print("🌐 Loading summarizer directly from Hugging Face (no cache dir provided)...")
            tok, mdl = self._load_summarizer_core(name, device)

        self.tokenizers["summarizer"] = tok
        self.models["summarizer"] = mdl
        self.devices["summarizer"] = device

        print(f"βœ… Summarizer ready on {device}")
        return tok, mdl, device

    # -----------------------------
    # Summarization helpers
    # -----------------------------
    @staticmethod
    def _apply_vietnews_prefix(text: str, prefix: str, suffix: str) -> str:
        """
        For VietAI/vit5-vietnews: prefix 'vietnews: ' and suffix ' </s>'
        Safe for general T5-family; harmless for BART-family.
        """
        t = (text or "").strip()
        if not t:
            return ""
        return f"{prefix}{t}{suffix}"

    def summarize(self,
                  text: str,
                  max_len: int = 256,
                  min_len: int = 64,
                  prefix: str = "vietnews: ",
                  suffix: str = " </s>") -> str:
        """
        Summarize a single text with loaded summarizer.
        Raises RuntimeError if summarizer not loaded.
        """
        if "summarizer" not in self.models or "summarizer" not in self.tokenizers:
            raise RuntimeError("❌ Summarizer not loaded. Call load_summarizer() first.")

        model: AutoModelForSeq2SeqLM = self.models["summarizer"]
        tokenizer: AutoTokenizer = self.tokenizers["summarizer"]
        device: torch.device = self.devices["summarizer"]

        prepared = self._apply_vietnews_prefix(text, prefix, suffix)
        if not prepared:
            return ""

        encoding = tokenizer(
            prepared,
            return_tensors="pt",
            truncation=True,
            max_length=1024
        ).to(device)

        with torch.no_grad():
            outputs = model.generate(
                **encoding,
                max_length=max_len,
                min_length=min_len,
                num_beams=4,
                no_repeat_ngram_size=3,
                early_stopping=True
            )

        summary = tokenizer.decode(
            outputs[0],
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True
        )
        return summary

    def summarize_batch(self,
                        texts: List[str],
                        max_len: int = 256,
                        min_len: int = 64,
                        prefix: str = "vietnews: ",
                        suffix: str = " </s>") -> List[str]:
        """
        Batch summarization. Processes in a single forward pass when possible.
        """
        if "summarizer" not in self.models or "summarizer" not in self.tokenizers:
            raise RuntimeError("❌ Summarizer not loaded. Call load_summarizer() first.")

        model: AutoModelForSeq2SeqLM = self.models["summarizer"]
        tokenizer: AutoTokenizer = self.tokenizers["summarizer"]
        device: torch.device = self.devices["summarizer"]

        batch = [self._apply_vietnews_prefix(t, prefix, suffix) for t in texts]
        batch = [b for b in batch if b]  # drop empties
        if not batch:
            return []

        encoding = tokenizer(
            batch,
            return_tensors="pt",
            truncation=True,
            max_length=1024,
            padding=True
        ).to(device)

        summaries: List[str] = []
        with torch.no_grad():
            outputs = model.generate(
                **encoding,
                max_length=max_len,
                min_length=min_len,
                num_beams=4,
                no_repeat_ngram_size=3,
                early_stopping=True
            )
        for i in range(outputs.shape[0]):
            dec = tokenizer.decode(
                outputs[i],
                skip_special_tokens=True,
                clean_up_tokenization_spaces=True
            )
            summaries.append(dec)
        return summaries

    # -----------------------------
    # Diagnostics
    # -----------------------------
    def print_devices(self) -> None:
        print("\nπŸ“Š Device summary:")
        for key, dev in self.devices.items():
            print(f"  - {key}: {dev}")