Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import base64
|
| 2 |
from io import BytesIO
|
| 3 |
|
|
@@ -7,18 +8,25 @@ import torch
|
|
| 7 |
|
| 8 |
from diffusers import StableDiffusionPipeline, AutoencoderKL, AutoencoderTiny
|
| 9 |
|
| 10 |
-
device = "
|
| 11 |
-
weight_type = torch.
|
| 12 |
|
| 13 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
|
|
|
|
|
|
| 14 |
pipe.to(torch_device=device, torch_dtype=weight_type)
|
| 15 |
|
| 16 |
-
vae_tiny = AutoencoderTiny.from_pretrained(
|
|
|
|
|
|
|
| 17 |
vae_tiny.to(device, dtype=weight_type)
|
| 18 |
|
| 19 |
-
vae_large = AutoencoderKL.from_pretrained(
|
|
|
|
|
|
|
| 20 |
vae_tiny.to(device, dtype=weight_type)
|
| 21 |
|
|
|
|
| 22 |
def pil_image_to_data_url(img, format="PNG"):
|
| 23 |
buffered = BytesIO()
|
| 24 |
img.save(buffered, format=format)
|
|
@@ -26,11 +34,12 @@ def pil_image_to_data_url(img, format="PNG"):
|
|
| 26 |
return f"data:image/{format.lower()};base64,{img_str}"
|
| 27 |
|
| 28 |
|
|
|
|
| 29 |
def run(
|
| 30 |
prompt: str,
|
| 31 |
device_type="GPU",
|
| 32 |
vae_type=None,
|
| 33 |
-
param_dtype=
|
| 34 |
) -> PIL.Image.Image:
|
| 35 |
if vae_type == "tiny vae":
|
| 36 |
pipe.vae = vae_tiny
|
|
@@ -38,12 +47,15 @@ def run(
|
|
| 38 |
pipe.vae = vae_large
|
| 39 |
|
| 40 |
if device_type == "CPU":
|
| 41 |
-
device = "cpu"
|
| 42 |
-
param_dtype =
|
| 43 |
else:
|
| 44 |
device = "cuda"
|
| 45 |
-
|
| 46 |
-
pipe.to(
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
result = pipe(
|
| 49 |
prompt=prompt,
|
|
@@ -62,7 +74,7 @@ examples = [
|
|
| 62 |
]
|
| 63 |
|
| 64 |
with gr.Blocks(css="style.css") as demo:
|
| 65 |
-
gr.Markdown("# SDXS-512-DreamShaper
|
| 66 |
with gr.Group():
|
| 67 |
with gr.Row():
|
| 68 |
with gr.Column(min_width=685):
|
|
@@ -75,38 +87,51 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 75 |
container=False,
|
| 76 |
)
|
| 77 |
run_button = gr.Button("Run", scale=0)
|
| 78 |
-
|
| 79 |
-
device_choices = ['GPU','CPU']
|
| 80 |
-
device_type = gr.Radio(device_choices, label='Device',
|
| 81 |
-
value=device_choices[1],
|
| 82 |
-
interactive=False,
|
| 83 |
-
info='Only CPU now.')
|
| 84 |
-
|
| 85 |
-
vae_choices = ['tiny vae','large vae']
|
| 86 |
-
vae_type = gr.Radio(vae_choices, label='Image Decoder Type',
|
| 87 |
-
value=vae_choices[0],
|
| 88 |
-
interactive=True,
|
| 89 |
-
info='To save GPU memory, use tiny vae. For better quality, use large vae.')
|
| 90 |
-
|
| 91 |
-
dtype_choices = ['torch.float16','torch.float32']
|
| 92 |
-
param_dtype = gr.Radio(dtype_choices,label='torch.weight_type',
|
| 93 |
-
value=dtype_choices[0],
|
| 94 |
-
interactive=True,
|
| 95 |
-
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.')
|
| 96 |
-
|
| 97 |
-
download_output = gr.Button("Download output", elem_id="download_output")
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
inputs = [prompt, device_type, vae_type, param_dtype]
|
| 112 |
outputs = [result, download_output]
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import base64
|
| 3 |
from io import BytesIO
|
| 4 |
|
|
|
|
| 8 |
|
| 9 |
from diffusers import StableDiffusionPipeline, AutoencoderKL, AutoencoderTiny
|
| 10 |
|
| 11 |
+
device = "cuda"
|
| 12 |
+
weight_type = torch.float16
|
| 13 |
|
| 14 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 15 |
+
"IDKiro/sdxs-512-dreamshaper", torch_dtype=weight_type
|
| 16 |
+
)
|
| 17 |
pipe.to(torch_device=device, torch_dtype=weight_type)
|
| 18 |
|
| 19 |
+
vae_tiny = AutoencoderTiny.from_pretrained(
|
| 20 |
+
"IDKiro/sdxs-512-dreamshaper", subfolder="vae"
|
| 21 |
+
)
|
| 22 |
vae_tiny.to(device, dtype=weight_type)
|
| 23 |
|
| 24 |
+
vae_large = AutoencoderKL.from_pretrained(
|
| 25 |
+
"IDKiro/sdxs-512-dreamshaper", subfolder="vae_large"
|
| 26 |
+
)
|
| 27 |
vae_tiny.to(device, dtype=weight_type)
|
| 28 |
|
| 29 |
+
|
| 30 |
def pil_image_to_data_url(img, format="PNG"):
|
| 31 |
buffered = BytesIO()
|
| 32 |
img.save(buffered, format=format)
|
|
|
|
| 34 |
return f"data:image/{format.lower()};base64,{img_str}"
|
| 35 |
|
| 36 |
|
| 37 |
+
@spaces.GPU
|
| 38 |
def run(
|
| 39 |
prompt: str,
|
| 40 |
device_type="GPU",
|
| 41 |
vae_type=None,
|
| 42 |
+
param_dtype="torch.float16",
|
| 43 |
) -> PIL.Image.Image:
|
| 44 |
if vae_type == "tiny vae":
|
| 45 |
pipe.vae = vae_tiny
|
|
|
|
| 47 |
pipe.vae = vae_large
|
| 48 |
|
| 49 |
if device_type == "CPU":
|
| 50 |
+
device = "cpu"
|
| 51 |
+
param_dtype = "torch.float32"
|
| 52 |
else:
|
| 53 |
device = "cuda"
|
| 54 |
+
|
| 55 |
+
pipe.to(
|
| 56 |
+
torch_device=device,
|
| 57 |
+
torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
|
| 58 |
+
)
|
| 59 |
|
| 60 |
result = pipe(
|
| 61 |
prompt=prompt,
|
|
|
|
| 74 |
]
|
| 75 |
|
| 76 |
with gr.Blocks(css="style.css") as demo:
|
| 77 |
+
gr.Markdown("# SDXS-512-DreamShaper")
|
| 78 |
with gr.Group():
|
| 79 |
with gr.Row():
|
| 80 |
with gr.Column(min_width=685):
|
|
|
|
| 87 |
container=False,
|
| 88 |
)
|
| 89 |
run_button = gr.Button("Run", scale=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
device_choices = ["GPU", "CPU"]
|
| 92 |
+
device_type = gr.Radio(
|
| 93 |
+
device_choices,
|
| 94 |
+
label="Device",
|
| 95 |
+
value=device_choices[0],
|
| 96 |
+
interactive=True,
|
| 97 |
+
info="Thanks to the community for the GPU!",
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
vae_choices = ["tiny vae", "large vae"]
|
| 101 |
+
vae_type = gr.Radio(
|
| 102 |
+
vae_choices,
|
| 103 |
+
label="Image Decoder Type",
|
| 104 |
+
value=vae_choices[0],
|
| 105 |
+
interactive=True,
|
| 106 |
+
info="To save GPU memory, use tiny vae. For better quality, use large vae.",
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
dtype_choices = ["torch.float16", "torch.float32"]
|
| 110 |
+
param_dtype = gr.Radio(
|
| 111 |
+
dtype_choices,
|
| 112 |
+
label="torch.weight_type",
|
| 113 |
+
value=dtype_choices[0],
|
| 114 |
+
interactive=True,
|
| 115 |
+
info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
download_output = gr.Button(
|
| 119 |
+
"Download output", elem_id="download_output"
|
| 120 |
+
)
|
| 121 |
|
| 122 |
+
with gr.Column(min_width=512):
|
| 123 |
+
result = gr.Image(
|
| 124 |
+
label="Result",
|
| 125 |
+
height=512,
|
| 126 |
+
width=512,
|
| 127 |
+
elem_id="output_image",
|
| 128 |
+
show_label=False,
|
| 129 |
+
show_download_button=True,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
gr.Examples(examples=examples, inputs=prompt, outputs=result, fn=run)
|
| 133 |
+
|
| 134 |
+
demo.load(None, None, None)
|
| 135 |
|
| 136 |
inputs = [prompt, device_type, vae_type, param_dtype]
|
| 137 |
outputs = [result, download_output]
|