Spaces:
Running
Running
File size: 16,052 Bytes
f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 7b9de45 f32d4c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
"""
Leaderboard Module
==================
Evaluate tokenizers on real HuggingFace Arabic datasets
"""
import statistics
from typing import Dict, List, Tuple, Optional
from collections import defaultdict
import gradio as gr
from datasets import load_dataset
from transformers import AutoTokenizer
from config import LEADERBOARD_DATASETS
from tokenizer_manager import tokenizer_manager
class HFDatasetLoader:
"""Load Arabic datasets from HuggingFace"""
def __init__(self):
self.cache = {}
def load_dataset_texts(self, dataset_key: str) -> Tuple[List[str], str]:
"""Load texts from a HuggingFace dataset"""
if dataset_key in self.cache:
return self.cache[dataset_key], f"β
Loaded {len(self.cache[dataset_key])} samples (cached)"
config = LEADERBOARD_DATASETS.get(dataset_key)
if not config:
return [], f"β Unknown dataset: {dataset_key}"
try:
# Load dataset from HuggingFace
if config.get("subset"):
ds = load_dataset(
config["hf_id"],
config["subset"],
split=config["split"],
trust_remote_code=True
)
else:
ds = load_dataset(
config["hf_id"],
split=config["split"],
trust_remote_code=True
)
texts = []
text_col = config["text_column"]
# Try to find text column
if text_col not in ds.column_names:
for col in ["text", "content", "sentence", "arabic", "context", "Tweet", "question", "poem_text", "hadith_text_ar"]:
if col in ds.column_names:
text_col = col
break
# Extract texts
max_samples = config.get("samples", 500)
for i, item in enumerate(ds):
if i >= max_samples:
break
text = item.get(text_col, "")
if text and isinstance(text, str) and len(text.strip()) > 10:
texts.append(text.strip())
self.cache[dataset_key] = texts
return texts, f"β
Loaded {len(texts)} samples from HuggingFace"
except Exception as e:
return [], f"β Error loading {config['hf_id']}: {str(e)[:80]}"
def evaluate_tokenizer_on_texts(tokenizer, texts: List[str]) -> Optional[Dict]:
"""Evaluate a tokenizer on a list of texts"""
fertilities = []
compressions = []
unk_counts = 0
total_tokens = 0
for text in texts:
try:
tokens = tokenizer.encode(text, add_special_tokens=False)
decoded = tokenizer.convert_ids_to_tokens(tokens)
num_tokens = len(tokens)
num_words = len(text.split()) or 1
num_bytes = len(text.encode('utf-8'))
fertility = num_tokens / num_words
compression = num_bytes / num_tokens if num_tokens > 0 else 0
# Count UNKs
unk_token = getattr(tokenizer, 'unk_token', '[UNK]')
unks = sum(1 for t in decoded if t and (t == unk_token or '<unk>' in str(t).lower() or '[unk]' in str(t).lower()))
fertilities.append(fertility)
compressions.append(compression)
unk_counts += unks
total_tokens += num_tokens
except Exception:
continue
if not fertilities:
return None
return {
"avg_fertility": statistics.mean(fertilities),
"std_fertility": statistics.stdev(fertilities) if len(fertilities) > 1 else 0,
"avg_compression": statistics.mean(compressions),
"unk_ratio": unk_counts / total_tokens if total_tokens > 0 else 0,
"samples": len(fertilities)
}
def calculate_leaderboard_score(fertility: float, compression: float, unk_ratio: float) -> float:
"""Calculate overall score (0-100, higher is better)"""
# Lower fertility is better (ideal ~1.0 for Arabic)
fertility_score = max(0, min(1, 2.0 / fertility)) if fertility > 0 else 0
# Higher compression is better
compression_score = min(1, compression / 6)
# Lower UNK is better
unk_score = 1 - min(1, unk_ratio * 20)
# Weighted combination
score = (fertility_score * 0.45 + compression_score * 0.35 + unk_score * 0.20) * 100
return round(score, 1)
def run_leaderboard_evaluation(
selected_datasets: List[str],
selected_tokenizers: List[str],
progress=gr.Progress()
) -> Tuple[str, str, str]:
"""
Run the full leaderboard evaluation with real HF datasets
Returns: (leaderboard_html, per_dataset_html, status_message)
"""
if not selected_datasets:
return "", "", "β οΈ Please select at least one dataset"
if not selected_tokenizers:
return "", "", "β οΈ Please select at least one tokenizer"
loader = HFDatasetLoader()
results = defaultdict(dict)
# Status tracking
status_lines = []
# Load datasets from HuggingFace
status_lines.append("π **Loading Datasets from HuggingFace:**\n")
loaded_datasets = {}
for i, ds_key in enumerate(selected_datasets):
progress((i + 1) / len(selected_datasets) * 0.3, f"Loading {ds_key}...")
texts, msg = loader.load_dataset_texts(ds_key)
ds_name = LEADERBOARD_DATASETS[ds_key]["name"]
status_lines.append(f" β’ {ds_name}: {msg}")
if texts:
loaded_datasets[ds_key] = texts
if not loaded_datasets:
return "", "", "\n".join(status_lines) + "\n\nβ No datasets loaded successfully"
# Evaluate tokenizers
status_lines.append("\nπ **Evaluating Tokenizers:**\n")
tokenizer_cache = {}
total_steps = len(selected_tokenizers) * len(loaded_datasets)
current_step = 0
for tok_choice in selected_tokenizers:
# Get model ID from choice
tok_id = tokenizer_manager.get_model_id_from_choice(tok_choice)
tok_info = tokenizer_manager.get_available_tokenizers().get(tok_id)
tok_name = tok_info.name if tok_info else tok_choice
# Load tokenizer
try:
if tok_id not in tokenizer_cache:
tokenizer_cache[tok_id] = AutoTokenizer.from_pretrained(
tok_id, trust_remote_code=True
)
tokenizer = tokenizer_cache[tok_id]
status_lines.append(f" β’ {tok_name}: β
Loaded")
except Exception as e:
status_lines.append(f" β’ {tok_name}: β Failed ({str(e)[:30]})")
continue
# Evaluate on each dataset
for ds_key, texts in loaded_datasets.items():
current_step += 1
progress(0.3 + (current_step / total_steps) * 0.6, f"Evaluating {tok_name} on {ds_key}...")
metrics = evaluate_tokenizer_on_texts(tokenizer, texts)
if metrics:
results[tok_choice][ds_key] = metrics
# Generate leaderboard
progress(0.95, "Generating leaderboard...")
leaderboard_data = []
per_dataset_data = []
for tok_choice, ds_results in results.items():
if not ds_results:
continue
tok_id = tokenizer_manager.get_model_id_from_choice(tok_choice)
tok_info = tokenizer_manager.get_available_tokenizers().get(tok_id)
# Aggregate across datasets
all_fertility = [m["avg_fertility"] for m in ds_results.values()]
all_compression = [m["avg_compression"] for m in ds_results.values()]
all_unk = [m["unk_ratio"] for m in ds_results.values()]
avg_fertility = statistics.mean(all_fertility)
avg_compression = statistics.mean(all_compression)
avg_unk = statistics.mean(all_unk)
score = calculate_leaderboard_score(avg_fertility, avg_compression, avg_unk)
leaderboard_data.append({
"name": tok_info.name if tok_info else tok_choice,
"type": tok_info.type.value if tok_info else "Unknown",
"org": tok_info.organization if tok_info else "Unknown",
"score": score,
"fertility": avg_fertility,
"compression": avg_compression,
"unk_ratio": avg_unk,
"num_datasets": len(ds_results)
})
# Per-dataset row
per_ds_row = {"Tokenizer": tok_info.name if tok_info else tok_choice}
for ds_key in selected_datasets:
ds_name = LEADERBOARD_DATASETS[ds_key]["name"]
if ds_key in ds_results:
per_ds_row[ds_name] = round(ds_results[ds_key]["avg_fertility"], 2)
else:
per_ds_row[ds_name] = "-"
per_dataset_data.append(per_ds_row)
# Sort by score
leaderboard_data.sort(key=lambda x: x["score"], reverse=True)
# Create HTML tables
leaderboard_html = generate_leaderboard_html(leaderboard_data)
per_dataset_html = generate_per_dataset_html(per_dataset_data, selected_datasets)
status_lines.append(f"\nβ
**Evaluation Complete!** Evaluated {len(results)} tokenizers on {len(loaded_datasets)} datasets.")
return leaderboard_html, per_dataset_html, "\n".join(status_lines)
def generate_leaderboard_html(data: List[Dict]) -> str:
"""Generate HTML for main leaderboard - clean professional design"""
if not data:
return "<p>No results to display</p>"
html = """
<style>
.leaderboard-table {
width: 100%;
border-collapse: collapse;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
font-size: 14px;
margin: 16px 0;
}
.leaderboard-table th {
background: #2c3e50;
color: #fff;
padding: 12px 10px;
text-align: left;
font-weight: 500;
border-bottom: 2px solid #1a252f;
}
.leaderboard-table td {
padding: 10px;
border-bottom: 1px solid #e9ecef;
color: #333;
}
.leaderboard-table tr:nth-child(even) {
background-color: #f8f9fa;
}
.leaderboard-table tr:hover {
background-color: #eef2f7;
}
.leaderboard-table .rank-1 td { background: #f0f7ff; }
.leaderboard-table .rank-2 td { background: #f5f5f5; }
.leaderboard-table .rank-3 td { background: #fdf8f3; }
.score-badge {
background: #2c3e50;
color: #fff;
padding: 4px 10px;
border-radius: 4px;
font-weight: 600;
font-size: 13px;
}
.type-badge {
background: #e9ecef;
color: #495057;
padding: 3px 8px;
border-radius: 3px;
font-size: 12px;
}
.metric-good { color: #198754; font-weight: 500; }
.metric-bad { color: #dc3545; font-weight: 500; }
.rank-medal { font-size: 16px; margin-right: 4px; }
</style>
<table class="leaderboard-table">
<thead>
<tr>
<th>Rank</th>
<th>Tokenizer</th>
<th>Type</th>
<th>Organization</th>
<th>Score</th>
<th>Fertility</th>
<th>Compression</th>
<th>UNK Rate</th>
<th>Datasets</th>
</tr>
</thead>
<tbody>
"""
for i, entry in enumerate(data):
rank = i + 1
rank_class = f"rank-{rank}" if rank <= 3 else ""
# Medal for top 3
if rank == 1:
rank_display = '<span class="rank-medal">π₯</span> 1'
elif rank == 2:
rank_display = '<span class="rank-medal">π₯</span> 2'
elif rank == 3:
rank_display = '<span class="rank-medal">π₯</span> 3'
else:
rank_display = f"#{rank}"
fert_class = "metric-good" if entry["fertility"] < 2.0 else "metric-bad" if entry["fertility"] > 3.0 else ""
comp_class = "metric-good" if entry["compression"] > 3.5 else ""
unk_class = "metric-good" if entry["unk_ratio"] < 0.01 else "metric-bad" if entry["unk_ratio"] > 0.05 else ""
html += f"""
<tr class="{rank_class}">
<td><strong>{rank_display}</strong></td>
<td><strong>{entry["name"]}</strong></td>
<td><span class="type-badge">{entry["type"]}</span></td>
<td>{entry["org"]}</td>
<td><span class="score-badge">{entry["score"]}</span></td>
<td class="{fert_class}">{entry["fertility"]:.3f}</td>
<td class="{comp_class}">{entry["compression"]:.2f}</td>
<td class="{unk_class}">{entry["unk_ratio"]:.2%}</td>
<td>{entry["num_datasets"]}</td>
</tr>
"""
html += """
</tbody>
</table>
<div style="margin-top: 12px; padding: 12px 16px; background: #f8f9fa; border-left: 3px solid #2c3e50; font-size: 13px; color: #495057;">
<strong>Metrics:</strong>
Score (0-100, higher=better) β’
Fertility (tokens/word, lower=better) β’
Compression (bytes/token, higher=better) β’
UNK Rate (lower=better)
</div>
"""
return html
def generate_per_dataset_html(data: List[Dict], dataset_keys: List[str]) -> str:
"""Generate HTML for per-dataset fertility table - clean professional design"""
if not data:
return "<p>No per-dataset results</p>"
ds_names = [LEADERBOARD_DATASETS[k]["name"] for k in dataset_keys]
html = """
<style>
.dataset-table {
width: 100%;
border-collapse: collapse;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
font-size: 13px;
margin: 16px 0;
}
.dataset-table th {
background: #495057;
color: #fff;
padding: 10px 8px;
text-align: center;
font-weight: 500;
}
.dataset-table th:first-child {
text-align: left;
}
.dataset-table td {
padding: 8px;
text-align: center;
border-bottom: 1px solid #e9ecef;
color: #333;
}
.dataset-table td:first-child {
text-align: left;
font-weight: 500;
}
.dataset-table tr:nth-child(even) {
background-color: #f8f9fa;
}
.dataset-table tr:hover {
background-color: #eef2f7;
}
.fert-excellent { background: #d4edda; color: #155724; font-weight: 500; }
.fert-good { background: #fff3cd; color: #856404; font-weight: 500; }
.fert-poor { background: #f8d7da; color: #721c24; font-weight: 500; }
</style>
<table class="dataset-table">
<thead>
<tr>
<th>Tokenizer</th>
"""
for ds_name in ds_names:
html += f"<th>{ds_name}</th>"
html += """
</tr>
</thead>
<tbody>
"""
for row in data:
html += f"<tr><td>{row['Tokenizer']}</td>"
for ds_name in ds_names:
val = row.get(ds_name, "-")
if val != "-":
if val < 1.8:
cls = "fert-excellent"
elif val < 2.5:
cls = "fert-good"
else:
cls = "fert-poor"
html += f'<td class="{cls}">{val}</td>'
else:
html += '<td>-</td>'
html += "</tr>"
html += """
</tbody>
</table>
"""
return html
|