PIWM / config_web.py
musictimer's picture
Initial Diamond CSGO AI deployment
c64c726
"""
Configuration helper for web deployment
Handles path resolution and model loading for deployment
"""
import os
from pathlib import Path
from typing import Optional
import logging
logger = logging.getLogger(__name__)
class WebConfig:
"""Configuration manager for web deployment"""
def __init__(self, base_path: Optional[Path] = None):
if base_path is None:
base_path = Path.cwd()
self.base_path = Path(base_path)
def get_config_path(self) -> Path:
"""Get configuration directory path"""
# Try multiple possible locations
possible_paths = [
self.base_path / "config",
self.base_path / "src" / ".." / "config",
Path(__file__).parent / "config"
]
for path in possible_paths:
if path.exists():
return path.resolve()
# Create default config directory
config_path = self.base_path / "config"
config_path.mkdir(exist_ok=True)
return config_path
def get_checkpoint_path(self) -> Path:
"""Find and return the best available checkpoint"""
# Try different possible locations and names
possible_checkpoints = [
self.base_path / "agent_epoch_00003.pt",
self.base_path / "agent_epoch_00003.pt",
self.base_path / "checkpoints" / "agent_epoch_00003.pt",
self.base_path / "checkpoints" / "agent_epoch_00003.pt",
self.base_path / "checkpoints" / "latest.pt",
]
for ckpt_path in possible_checkpoints:
if ckpt_path.exists():
logger.info(f"Found checkpoint: {ckpt_path}")
return ckpt_path
# If no checkpoint found, create a dummy message
logger.warning("No checkpoint found - you may need to download models")
return self.base_path / "checkpoints" / "model_not_found.pt"
def get_spawn_dir(self) -> Path:
"""Get spawn data directory"""
spawn_dir = self.base_path / "csgo" / "spawn"
spawn_dir.mkdir(parents=True, exist_ok=True)
# Create dummy spawn data if it doesn't exist
spawn_subdir = spawn_dir / "0"
spawn_subdir.mkdir(exist_ok=True)
# Create dummy files if they don't exist
dummy_files = ["act.npy", "full_res.npy", "info.json", "low_res.npy", "next_act.npy"]
for filename in dummy_files:
file_path = spawn_subdir / filename
if not file_path.exists():
if filename.endswith('.npy'):
import numpy as np
np.save(file_path, np.zeros((1, 10))) # Dummy array
elif filename.endswith('.json'):
import json
with open(file_path, 'w') as f:
json.dump({"dummy": True}, f)
return spawn_dir
def setup_environment_variables(self):
"""Set up environment variables for deployment"""
# Disable CUDA if not available (for CPU-only deployment)
if not self.has_cuda():
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# Set Python path
python_path = str(self.base_path / "src")
current_path = os.environ.get("PYTHONPATH", "")
if python_path not in current_path:
os.environ["PYTHONPATH"] = f"{python_path}:{current_path}" if current_path else python_path
def has_cuda(self) -> bool:
"""Check if CUDA is available"""
try:
import torch
return torch.cuda.is_available()
except ImportError:
return False
def create_default_configs(self):
"""Create default configuration files if they don't exist"""
config_dir = self.get_config_path()
# Create agent config
agent_dir = config_dir / "agent"
agent_dir.mkdir(exist_ok=True)
agent_config_path = agent_dir / "csgo.yaml"
if not agent_config_path.exists():
with open(agent_config_path, 'w') as f:
f.write("""_target_: agent.AgentConfig
denoiser:
_target_: models.diffusion.DenoiserConfig
sigma_data: 0.5
sigma_offset_noise: 0.1
noise_previous_obs: true
upsampling_factor: null
inner_model:
_target_: models.diffusion.InnerModelConfig
img_channels: 3
num_steps_conditioning: 4
cond_channels: 2048
depths: [2, 2, 2, 2]
channels: [128, 256, 512, 1024]
attn_depths: [0, 0, 1, 1]
upsampler:
_target_: models.diffusion.DenoiserConfig
sigma_data: 0.5
sigma_offset_noise: 0.1
noise_previous_obs: false
upsampling_factor: 5
inner_model:
_target_: models.diffusion.InnerModelConfig
img_channels: 3
num_steps_conditioning: 1
cond_channels: 2048
depths: [2, 2, 2, 2]
channels: [64, 64, 128, 256]
attn_depths: [0, 0, 0, 1]
rew_end_model: null
actor_critic: null
""")
# Create env config
env_dir = config_dir / "env"
env_dir.mkdir(exist_ok=True)
env_config_path = env_dir / "csgo.yaml"
if not env_config_path.exists():
with open(env_config_path, 'w') as f:
f.write("""train:
id: csgo
size: [150, 600]
num_actions: 51
path_data_low_res: /tmp/dummy_data_low_res
path_data_full_res: /tmp/dummy_data_full_res
keymap: csgo
""")
# Create world model env config
wm_env_dir = config_dir / "world_model_env"
wm_env_dir.mkdir(exist_ok=True)
wm_config_path = wm_env_dir / "fast.yaml"
if not wm_config_path.exists():
with open(wm_config_path, 'w') as f:
f.write("""_target_: envs.WorldModelEnvConfig
horizon: 1000
num_batches_to_preload: 1
diffusion_sampler_next_obs:
_target_: models.diffusion.DiffusionSamplerConfig
num_steps_denoising: 10
sigma_min: 0.002
sigma_max: 5.0
rho: 7
order: 1
diffusion_sampler_upsampling:
_target_: models.diffusion.DiffusionSamplerConfig
num_steps_denoising: 5
sigma_min: 0.002
sigma_max: 5.0
rho: 7
order: 1
""")
# Create trainer config
trainer_config_path = config_dir / "trainer.yaml"
if not trainer_config_path.exists():
with open(trainer_config_path, 'w') as f:
f.write("""defaults:
- _self_
- env: csgo
- agent: csgo
- world_model_env: fast
static_dataset:
path: /tmp/dummy_data_low_res
ignore_sample_weights: True
""")
# Global config instance
web_config = WebConfig()