PIWM / app.py
musictimer's picture
Initial Diamond CSGO AI deployment
c64c726
raw
history blame
42.4 kB
"""
Web-based Diamond CSGO AI Player for Hugging Face Spaces
Uses FastAPI + WebSocket for real-time keyboard input and game streaming
"""
import asyncio
import base64
import io
import json
import logging
import os
from pathlib import Path
from typing import Dict, List, Optional, Set
import cv2
import numpy as np
import torch
import uvicorn
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from hydra import compose, initialize
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
from PIL import Image
# Import your modules
from src.agent import Agent
from src.csgo.web_action_processing import WebCSGOAction, web_keys_to_csgo_action_names
from src.envs import WorldModelEnv
from src.game.web_play_env import WebPlayEnv
from config_web import web_config
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables
app = FastAPI(title="Diamond CSGO AI Player")
connected_clients: Set[WebSocket] = set()
class WebKeyMap:
"""Map web key codes to pygame-like keys for CSGO actions"""
WEB_TO_CSGO = {
'KeyW': 'w',
'KeyA': 'a',
'KeyS': 's',
'KeyD': 'd',
'Space': 'space',
'ControlLeft': 'left ctrl',
'ShiftLeft': 'left shift',
'Digit1': '1',
'Digit2': '2',
'Digit3': '3',
'KeyR': 'r',
'ArrowUp': 'camera_up',
'ArrowDown': 'camera_down',
'ArrowLeft': 'camera_left',
'ArrowRight': 'camera_right'
}
class WebGameEngine:
"""Web-compatible game engine that replaces pygame functionality"""
def __init__(self):
self.play_env: Optional[WebPlayEnv] = None
self.obs = None
self.running = False
self.game_started = False
self.fps = 30 # Display FPS
self.ai_fps = 10 # AI inference FPS (slower than display for efficiency)
self.frame_count = 0
self.ai_frame_count = 0
self.last_ai_time = 0
self.start_time = 0 # Track when AI started for proper FPS calculation
self.pressed_keys: Set[str] = set()
self.mouse_x = 0
self.mouse_y = 0
self.l_click = False
self.r_click = False
self.should_reset = False
self.cached_obs = None # Cache last observation for frame skipping
self.first_inference_done = False # Track if first inference completed
self.models_ready = False # Track if models are loaded
self.download_progress = 0 # Track download progress (0-100)
self.loading_status = "Initializing..." # Loading status message
import time
self.time_module = time
async def _download_model_async(self, url, filepath):
"""Download model asynchronously with progress tracking"""
import asyncio
import concurrent.futures
import urllib.request
import os
def download_with_progress():
"""Download function that runs in thread pool"""
def progress_hook(block_num, block_size, total_size):
if total_size > 0:
progress = min(100, (block_num * block_size * 100) / total_size)
self.download_progress = int(progress)
if progress % 10 == 0: # Log every 10%
logger.info(f"Download progress: {self.download_progress}%")
urllib.request.urlretrieve(url, filepath, reporthook=progress_hook)
self.download_progress = 100
# Run download in thread pool to avoid blocking
loop = asyncio.get_event_loop()
with concurrent.futures.ThreadPoolExecutor() as executor:
await loop.run_in_executor(executor, download_with_progress)
logger.info("Model download completed!")
async def initialize_models(self):
"""Initialize the AI models and environment"""
try:
import torch
logger.info("Initializing models...")
# Setup environment and paths
web_config.setup_environment_variables()
web_config.create_default_configs()
config_path = web_config.get_config_path()
logger.info(f"Using config path: {config_path}")
# Convert to relative path for Hydra
import os
relative_config_path = os.path.relpath(config_path)
logger.info(f"Relative config path: {relative_config_path}")
with initialize(version_base="1.3", config_path=relative_config_path):
cfg = compose(config_name="trainer")
# Override config for deployment
cfg.agent = OmegaConf.load(config_path / "agent" / "csgo.yaml")
cfg.env = OmegaConf.load(config_path / "env" / "csgo.yaml")
# Use CPU if no GPU available (for free HF spaces)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {device}")
# Load model checkpoint
checkpoint_path = web_config.get_checkpoint_path()
if not checkpoint_path.exists():
logger.warning(f"No checkpoint found at {checkpoint_path} - using dummy mode")
self._init_dummy_mode()
return True
# Get spawn directory
spawn_dir = web_config.get_spawn_dir()
# Initialize agent
num_actions = cfg.env.num_actions
agent = Agent(instantiate(cfg.agent, num_actions=num_actions)).to(device).eval()
# Try to load checkpoint (remote or local)
try:
# First try to download from Hugging Face Hub using direct URL
try:
import torch.hub
import os
logger.info("Downloading model from Hugging Face Hub...")
# Direct download URL (change 'blob' to 'resolve' for direct download)
model_url = "https://huggingface.co/Etadingrui/diamond-1B/resolve/main/agent_epoch_00003.pt"
# Download to cache directory
cache_dir = "./cache"
os.makedirs(cache_dir, exist_ok=True)
model_cache_path = os.path.join(cache_dir, "agent_epoch_00003.pt")
# Download if not cached
if not os.path.exists(model_cache_path):
logger.info(f"Downloading 1.53GB model to {model_cache_path}...")
self.loading_status = "Downloading AI model from Hugging Face Hub..."
# Download with progress tracking in a separate thread
await self._download_model_async(model_url, model_cache_path)
else:
logger.info(f"Using cached model from {model_cache_path}")
self.loading_status = "Loading cached model..."
# Use the agent's load method which expects a file path
self.loading_status = "Loading model weights..."
agent.load(model_cache_path)
logger.info(f"Successfully loaded checkpoint from HF Hub")
except Exception as hub_error:
logger.warning(f"Failed to download from HF Hub: {hub_error}")
# Fallback to local checkpoint if available
if checkpoint_path.exists():
logger.info(f"Falling back to local checkpoint: {checkpoint_path}")
agent.load(checkpoint_path)
logger.info(f"Successfully loaded local checkpoint: {checkpoint_path}")
else:
raise FileNotFoundError("No model checkpoint available (local or remote)")
except Exception as e:
logger.error(f"Failed to load any checkpoint: {e}")
self._init_dummy_mode()
return True
# Initialize world model environment
try:
sl = cfg.agent.denoiser.inner_model.num_steps_conditioning
if agent.upsampler is not None:
sl = max(sl, cfg.agent.upsampler.inner_model.num_steps_conditioning)
wm_env_cfg = instantiate(cfg.world_model_env, num_batches_to_preload=1)
wm_env = WorldModelEnv(agent.denoiser, agent.upsampler, agent.rew_end_model,
spawn_dir, 1, sl, wm_env_cfg, return_denoising_trajectory=True)
# Create play environment
self.play_env = WebPlayEnv(agent, wm_env, False, False, False)
# Model compilation causes 10-30s delay on first inference, so make it optional
# You can enable it by setting ENABLE_TORCH_COMPILE=1 environment variable
import os
if device.type == "cuda" and os.getenv("ENABLE_TORCH_COMPILE", "0") == "1":
logger.info("Compiling models for faster inference (will cause delay on first inference)...")
try:
wm_env.predict_next_obs = torch.compile(wm_env.predict_next_obs, mode="reduce-overhead")
if wm_env.upsample_next_obs is not None:
wm_env.upsample_next_obs = torch.compile(wm_env.upsample_next_obs, mode="reduce-overhead")
logger.info("Model compilation enabled successfully!")
except Exception as e:
logger.warning(f"Model compilation failed: {e}")
else:
logger.info("Model compilation disabled (faster startup). Set ENABLE_TORCH_COMPILE=1 to enable.")
# Reset environment
self.obs, _ = self.play_env.reset()
self.cached_obs = self.obs # Initialize cache
logger.info("Models initialized successfully!")
logger.info(f"Initial observation shape: {self.obs.shape if self.obs is not None else 'None'}")
self.models_ready = True
self.loading_status = "Ready!"
return True
except Exception as e:
logger.error(f"Failed to initialize world model environment: {e}")
self._init_dummy_mode()
self.models_ready = True
self.loading_status = "Using dummy mode"
return True
except Exception as e:
logger.error(f"Failed to initialize models: {e}")
import traceback
traceback.print_exc()
self._init_dummy_mode()
self.models_ready = True
self.loading_status = "Error - using dummy mode"
return True
def _init_dummy_mode(self):
"""Initialize dummy mode for testing without models"""
logger.info("Initializing dummy mode...")
# Create a test observation
height, width = 150, 600
img_array = np.zeros((height, width, 3), dtype=np.uint8)
# Add test pattern
for y in range(height):
for x in range(width):
img_array[y, x, 0] = (x % 256) # Red gradient
img_array[y, x, 1] = (y % 256) # Green gradient
img_array[y, x, 2] = ((x + y) % 256) # Blue pattern
# Convert to torch tensor in expected format [-1, 1]
tensor = torch.from_numpy(img_array).float().permute(2, 0, 1) # CHW format
tensor = tensor.div(255).mul(2).sub(1) # Convert to [-1, 1] range
tensor = tensor.unsqueeze(0) # Add batch dimension
self.obs = tensor
self.play_env = None # No real environment in dummy mode
logger.info("Dummy mode initialized with test pattern")
def step_environment(self):
"""Step the environment with current input state (with intelligent frame skipping)"""
if self.play_env is None:
# Dummy mode - just return current observation
return self.obs, 0.0, False, False, {"mode": "dummy"}
try:
# Check if reset is requested
if self.should_reset:
self.reset_environment()
self.should_reset = False
self.last_ai_time = self.time_module.time() # Reset AI timer
return self.obs, 0.0, False, False, {"reset": True}
# Intelligent frame skipping: only run AI inference at target FPS
current_time = self.time_module.time()
time_since_last_ai = current_time - self.last_ai_time
should_run_ai = time_since_last_ai >= (1.0 / self.ai_fps)
if should_run_ai:
# Show loading indicator for first inference (can be slow)
if not self.first_inference_done:
logger.info("Running first AI inference (may take 5-15 seconds)...")
# Run AI inference
inference_start = self.time_module.time()
next_obs, reward, done, truncated, info = self.play_env.step_from_web_input(
pressed_keys=self.pressed_keys,
mouse_x=self.mouse_x,
mouse_y=self.mouse_y,
l_click=self.l_click,
r_click=self.r_click
)
inference_time = self.time_module.time() - inference_start
# Log first inference completion
if not self.first_inference_done:
self.first_inference_done = True
logger.info(f"First AI inference completed in {inference_time:.2f}s - subsequent inferences will be faster!")
# Cache the new observation and update timing
self.cached_obs = next_obs
self.last_ai_time = current_time
self.ai_frame_count += 1
# Add AI performance info
info = info or {}
info["ai_inference"] = True
# Calculate proper AI FPS: frames / elapsed time since start
elapsed_time = current_time - self.start_time
if elapsed_time > 0 and self.ai_frame_count > 0:
ai_fps = self.ai_frame_count / elapsed_time
# Cap at reasonable maximum (shouldn't exceed 100 FPS for AI inference)
info["ai_fps"] = min(ai_fps, 100.0)
else:
info["ai_fps"] = 0
info["inference_time"] = inference_time
return next_obs, reward, done, truncated, info
else:
# Use cached observation for smoother display without AI overhead
obs_to_return = self.cached_obs if self.cached_obs is not None else self.obs
# Calculate AI FPS for cached frames too
elapsed_time = current_time - self.start_time
if elapsed_time > 0 and self.ai_frame_count > 0:
ai_fps = min(self.ai_frame_count / elapsed_time, 100.0) # Cap at 100 FPS
else:
ai_fps = 0
return obs_to_return, 0.0, False, False, {"cached": True, "ai_fps": ai_fps}
except Exception as e:
logger.error(f"Error stepping environment: {e}")
obs_to_return = self.cached_obs if self.cached_obs is not None else self.obs
return obs_to_return, 0.0, False, False, {"error": str(e)}
def reset_environment(self):
"""Reset the environment"""
try:
if self.play_env is not None:
self.obs, _ = self.play_env.reset()
self.cached_obs = self.obs # Update cache
logger.info("Environment reset successfully")
else:
# Dummy mode - recreate test pattern
self._init_dummy_mode()
self.cached_obs = self.obs # Update cache
logger.info("Dummy environment reset")
except Exception as e:
logger.error(f"Error resetting environment: {e}")
def request_reset(self):
"""Request environment reset on next step"""
self.should_reset = True
logger.info("Environment reset requested")
def start_game(self):
"""Start the game"""
self.game_started = True
self.start_time = self.time_module.time() # Reset start time for FPS calculation
self.ai_frame_count = 0 # Reset AI frame count
logger.info("Game started")
def pause_game(self):
"""Pause/stop the game"""
self.game_started = False
logger.info("Game paused")
def obs_to_base64(self, obs: torch.Tensor) -> str:
"""Convert observation tensor to base64 image for web display"""
if obs is None:
return ""
try:
# Convert tensor to PIL Image
if obs.ndim == 4 and obs.size(0) == 1:
img_array = obs[0].add(1).div(2).mul(255).byte().permute(1, 2, 0).cpu().numpy()
else:
img_array = obs.add(1).div(2).mul(255).byte().permute(1, 2, 0).cpu().numpy()
img = Image.fromarray(img_array)
# Resize for web display to match canvas size (optimized)
img = img.resize((600, 150), Image.NEAREST) # NEAREST is faster than BICUBIC
# Optimized base64 conversion with JPEG for better compression/speed
buffer = io.BytesIO()
img.save(buffer, format='JPEG', quality=85, optimize=True) # JPEG is faster than PNG
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/jpeg;base64,{img_str}"
except Exception as e:
logger.error(f"Error converting observation to base64: {e}")
return ""
async def game_loop(self):
"""Main game loop that runs continuously"""
self.running = True
while self.running:
try:
# Check if models are ready
if not self.models_ready:
# Send loading status to clients
if connected_clients:
loading_data = {
'type': 'loading',
'status': self.loading_status,
'progress': self.download_progress,
'ready': False
}
disconnected = set()
for client in connected_clients.copy():
try:
await client.send_text(json.dumps(loading_data))
except:
disconnected.add(client)
connected_clients.difference_update(disconnected)
await asyncio.sleep(0.5) # Check every 500ms during loading
continue
# Always send frames, but only step environment if game is started
should_send_frame = True
if not self.game_started:
# Game not started - just send current observation without stepping
if self.obs is not None and connected_clients:
should_send_frame = True
else:
should_send_frame = False
await asyncio.sleep(0.1)
else:
# Game is started - step environment
if self.play_env is None:
await asyncio.sleep(0.1)
continue
# Step environment with current input state
next_obs, reward, done, truncated, info = self.step_environment()
if done or truncated:
# Auto-reset when episode ends
self.reset_environment()
else:
self.obs = next_obs
# Send frame to all connected clients (regardless of game state)
if should_send_frame and connected_clients and self.obs is not None:
# Set default values for when game isn't running
if not self.game_started:
reward = 0.0
info = {"waiting": True}
# If game is started, reward and info should be set above
# Convert observation to base64
image_data = self.obs_to_base64(self.obs)
# Debug logging for first few frames
if self.frame_count < 5:
logger.info(f"Frame {self.frame_count}: obs shape={self.obs.shape if self.obs is not None else 'None'}, "
f"image_data_length={len(image_data) if image_data else 0}, "
f"game_started={self.game_started}")
frame_data = {
'type': 'frame',
'image': image_data,
'frame_count': self.frame_count,
'reward': float(reward.item()) if hasattr(reward, 'item') else float(reward) if reward is not None else 0.0,
'info': str(info) if info else "",
'ai_fps': info.get('ai_fps', 0) if isinstance(info, dict) else 0,
'is_ai_frame': info.get('ai_inference', False) if isinstance(info, dict) else False
}
# Send to all connected clients
disconnected = set()
for client in connected_clients.copy():
try:
await client.send_text(json.dumps(frame_data))
except:
disconnected.add(client)
# Remove disconnected clients
connected_clients.difference_update(disconnected)
self.frame_count += 1
await asyncio.sleep(1.0 / self.fps) # Control FPS
except Exception as e:
logger.error(f"Error in game loop: {e}")
await asyncio.sleep(0.1)
# Global game engine instance
game_engine = WebGameEngine()
@app.on_event("startup")
async def startup_event():
"""Initialize models when the app starts"""
# Start the game loop immediately (it will handle loading state)
asyncio.create_task(game_engine.game_loop())
# Initialize models in background (non-blocking)
asyncio.create_task(game_engine.initialize_models())
@app.get("/", response_class=HTMLResponse)
async def get_homepage():
"""Serve the main game interface"""
html_content = """
<!DOCTYPE html>
<html>
<head>
<title>Diamond CSGO AI Player</title>
<style>
body {
margin: 0;
padding: 20px;
background: #1a1a1a;
color: white;
font-family: 'Courier New', monospace;
text-align: center;
}
#gameCanvas {
border: 2px solid #00ff00;
background: #000;
margin: 20px auto;
display: block;
}
#controls {
margin: 20px;
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
max-width: 800px;
margin: 20px auto;
}
.control-section {
background: #2a2a2a;
padding: 15px;
border-radius: 8px;
border: 1px solid #444;
}
.key-display {
background: #333;
border: 1px solid #555;
padding: 5px 10px;
margin: 2px;
border-radius: 4px;
display: inline-block;
min-width: 30px;
}
.key-pressed {
background: #00ff00;
color: #000;
}
#status {
margin: 10px;
padding: 10px;
background: #2a2a2a;
border-radius: 4px;
}
.info {
color: #00ff00;
margin: 5px 0;
}
</style>
</head>
<body>
<h1>🎮 Diamond CSGO AI Player</h1>
<p><strong>Click the game canvas to start playing!</strong> Use ESC to pause, Enter to reset environment.</p>
<p id="loadingIndicator" style="color: #ffff00; display: none;">🚀 Starting AI inference... This may take 5-15 seconds on first run.</p>
<!-- Model Download Progress -->
<div id="downloadSection" style="display: none; margin: 20px;">
<p id="downloadStatus" style="color: #ffaa00; margin: 10px 0;">📥 Downloading AI model...</p>
<div style="background: #333; border-radius: 10px; padding: 3px; width: 100%; max-width: 600px; margin: 0 auto;">
<div id="progressBar" style="background: linear-gradient(90deg, #00ff00, #88ff00); height: 20px; border-radius: 7px; width: 0%; transition: width 0.3s;"></div>
</div>
<p id="progressText" style="color: #aaa; font-size: 14px; margin: 5px 0;">0% - Initializing...</p>
</div>
<canvas id="gameCanvas" width="600" height="150" tabindex="0"></canvas>
<div id="status">
<div class="info">Status: <span id="connectionStatus">Connecting...</span></div>
<div class="info">Game: <span id="gameStatus">Click to Start</span></div>
<div class="info">Frame: <span id="frameCount">0</span> | AI FPS: <span id="aiFps">0</span></div>
<div class="info">Reward: <span id="reward">0</span></div>
</div>
<div id="controls">
<div class="control-section">
<h3>Movement</h3>
<div>
<span class="key-display" id="key-w">W</span> Forward<br>
<span class="key-display" id="key-a">A</span> Left
<span class="key-display" id="key-s">S</span> Back
<span class="key-display" id="key-d">D</span> Right<br>
<span class="key-display" id="key-space">Space</span> Jump
<span class="key-display" id="key-ctrl">Ctrl</span> Crouch
<span class="key-display" id="key-shift">Shift</span> Walk
</div>
</div>
<div class="control-section">
<h3>Actions</h3>
<div>
<span class="key-display" id="key-1">1</span> Weapon 1<br>
<span class="key-display" id="key-2">2</span> Weapon 2
<span class="key-display" id="key-3">3</span> Weapon 3<br>
<span class="key-display" id="key-r">R</span> Reload<br>
<span class="key-display" id="key-arrows">↑↓←→</span> Camera<br>
<span class="key-display" id="key-enter">Enter</span> Reset Game<br>
<span class="key-display" id="key-esc">Esc</span> Pause/Quit
</div>
</div>
</div>
<script>
const canvas = document.getElementById('gameCanvas');
const ctx = canvas.getContext('2d');
const statusEl = document.getElementById('connectionStatus');
const gameStatusEl = document.getElementById('gameStatus');
const frameEl = document.getElementById('frameCount');
const aiFpsEl = document.getElementById('aiFps');
const rewardEl = document.getElementById('reward');
const loadingEl = document.getElementById('loadingIndicator');
const downloadSectionEl = document.getElementById('downloadSection');
const downloadStatusEl = document.getElementById('downloadStatus');
const progressBarEl = document.getElementById('progressBar');
const progressTextEl = document.getElementById('progressText');
let ws = null;
let pressedKeys = new Set();
let gameStarted = false;
// Key mapping
const keyDisplayMap = {
'KeyW': 'key-w',
'KeyA': 'key-a',
'KeyS': 'key-s',
'KeyD': 'key-d',
'Space': 'key-space',
'ControlLeft': 'key-ctrl',
'ShiftLeft': 'key-shift',
'Digit1': 'key-1',
'Digit2': 'key-2',
'Digit3': 'key-3',
'KeyR': 'key-r',
'ArrowUp': 'key-arrows',
'ArrowDown': 'key-arrows',
'ArrowLeft': 'key-arrows',
'ArrowRight': 'key-arrows',
'Enter': 'key-enter',
'Escape': 'key-esc'
};
function connectWebSocket() {
const protocol = window.location.protocol === 'https:' ? 'wss:' : 'ws:';
const wsUrl = `${protocol}//${window.location.host}/ws`;
ws = new WebSocket(wsUrl);
ws.onopen = function(event) {
statusEl.textContent = 'Connected';
statusEl.style.color = '#00ff00';
};
ws.onmessage = function(event) {
const data = JSON.parse(event.data);
if (data.type === 'loading') {
// Handle loading status
downloadSectionEl.style.display = 'block';
downloadStatusEl.textContent = data.status;
if (data.progress !== undefined) {
progressBarEl.style.width = data.progress + '%';
progressTextEl.textContent = data.progress + '% - ' + data.status;
} else {
progressTextEl.textContent = data.status;
}
gameStatusEl.textContent = 'Loading Models...';
gameStatusEl.style.color = '#ffaa00';
} else if (data.type === 'frame') {
// Hide loading indicators once we get frames
downloadSectionEl.style.display = 'none';
// Update frame display
if (data.image) {
const img = new Image();
img.onload = function() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
};
img.src = data.image;
}
frameEl.textContent = data.frame_count;
rewardEl.textContent = data.reward.toFixed(2);
// Update AI FPS display and hide loading indicator once AI starts
if (data.ai_fps !== undefined && data.ai_fps !== null) {
// Ensure FPS value is reasonable
const aiFps = Math.min(Math.max(data.ai_fps, 0), 100);
aiFpsEl.textContent = aiFps.toFixed(1);
// Color code AI FPS for performance indication
if (aiFps >= 8) {
aiFpsEl.style.color = '#00ff00'; // Green for good performance
} else if (aiFps >= 5) {
aiFpsEl.style.color = '#ffff00'; // Yellow for moderate performance
} else if (aiFps > 0) {
aiFpsEl.style.color = '#ff0000'; // Red for poor performance
} else {
aiFpsEl.style.color = '#888888'; // Gray for inactive
}
// Hide loading indicator once AI inference starts working
if (aiFps > 0 && gameStarted) {
loadingEl.style.display = 'none';
gameStatusEl.textContent = 'Playing';
gameStatusEl.style.color = '#00ff00';
}
}
}
};
ws.onclose = function(event) {
statusEl.textContent = 'Disconnected';
statusEl.style.color = '#ff0000';
setTimeout(connectWebSocket, 1000); // Reconnect after 1 second
};
ws.onerror = function(event) {
statusEl.textContent = 'Error';
statusEl.style.color = '#ff0000';
};
}
function sendKeyState() {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'keys',
keys: Array.from(pressedKeys)
}));
}
}
function startGame() {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'start'
}));
gameStarted = true;
gameStatusEl.textContent = 'Starting AI...';
gameStatusEl.style.color = '#ffff00';
loadingEl.style.display = 'block';
console.log('Game started');
}
}
function pauseGame() {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'pause'
}));
gameStarted = false;
gameStatusEl.textContent = 'Paused - Click to Resume';
gameStatusEl.style.color = '#ffff00';
console.log('Game paused');
}
}
function updateKeyDisplay() {
// Reset all key displays
Object.values(keyDisplayMap).forEach(id => {
const el = document.getElementById(id);
if (el) el.classList.remove('key-pressed');
});
// Highlight pressed keys
pressedKeys.forEach(key => {
const displayId = keyDisplayMap[key];
if (displayId) {
const el = document.getElementById(displayId);
if (el) el.classList.add('key-pressed');
}
});
}
// Focus canvas and handle keyboard events
canvas.addEventListener('click', () => {
canvas.focus();
if (!gameStarted) {
startGame();
}
});
canvas.addEventListener('keydown', (event) => {
event.preventDefault();
// Handle special keys
if (event.code === 'Enter') {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'reset'
}));
console.log('Environment reset requested');
}
// Add to pressedKeys for visual feedback
pressedKeys.add(event.code);
updateKeyDisplay();
// Remove Enter from pressedKeys after a short delay for visual feedback
setTimeout(() => {
pressedKeys.delete(event.code);
updateKeyDisplay();
}, 200);
} else if (event.code === 'Escape') {
pauseGame();
// Add to pressedKeys for visual feedback
pressedKeys.add(event.code);
updateKeyDisplay();
// Remove ESC from pressedKeys after a short delay for visual feedback
setTimeout(() => {
pressedKeys.delete(event.code);
updateKeyDisplay();
}, 200);
} else {
// Only send game keys if game is started
if (gameStarted) {
pressedKeys.add(event.code);
updateKeyDisplay();
sendKeyState();
}
}
});
canvas.addEventListener('keyup', (event) => {
event.preventDefault();
// Don't handle special keys release (handled in keydown with timeout)
if (event.code !== 'Enter' && event.code !== 'Escape') {
if (gameStarted) {
pressedKeys.delete(event.code);
updateKeyDisplay();
sendKeyState();
}
}
});
// Handle mouse events for clicks
canvas.addEventListener('mousedown', (event) => {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'mouse',
button: event.button,
action: 'down',
x: event.offsetX,
y: event.offsetY
}));
}
});
canvas.addEventListener('mouseup', (event) => {
if (ws && ws.readyState === WebSocket.OPEN) {
ws.send(JSON.stringify({
type: 'mouse',
button: event.button,
action: 'up',
x: event.offsetX,
y: event.offsetY
}));
}
});
// Initialize
connectWebSocket();
canvas.focus();
</script>
</body>
</html>
"""
return html_content
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
"""Handle WebSocket connections for real-time game communication"""
await websocket.accept()
connected_clients.add(websocket)
try:
while True:
# Receive messages from client
data = await websocket.receive_text()
message = json.loads(data)
if message['type'] == 'keys':
# Update pressed keys
game_engine.pressed_keys = set(message['keys'])
elif message['type'] == 'reset':
# Handle environment reset request
game_engine.request_reset()
elif message['type'] == 'start':
# Handle game start request
game_engine.start_game()
elif message['type'] == 'pause':
# Handle game pause request
game_engine.pause_game()
elif message['type'] == 'mouse':
# Handle mouse events
if message['action'] == 'down':
if message['button'] == 0: # Left click
game_engine.l_click = True
elif message['button'] == 2: # Right click
game_engine.r_click = True
elif message['action'] == 'up':
if message['button'] == 0: # Left click
game_engine.l_click = False
elif message['button'] == 2: # Right click
game_engine.r_click = False
# Update mouse position (relative to canvas)
game_engine.mouse_x = message.get('x', 0) - 300 # Center at 300px
game_engine.mouse_y = message.get('y', 0) - 150 # Center at 150px
except WebSocketDisconnect:
connected_clients.discard(websocket)
except Exception as e:
logger.error(f"WebSocket error: {e}")
connected_clients.discard(websocket)
if __name__ == "__main__":
# For local development
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)