Spaces:
Paused
Paused
Commit
Β·
5ed6938
1
Parent(s):
4cfc1e9
integrate Hunyuan3D API via gradio_client
Browse files- Replace local model loading with API calls to tencent/Hunyuan3D-2.1
- Use generation_all endpoint for both shape and texture generation
- Add proper image handling and temporary file management
- Maintain fallback 3D generation for reliability
- Remove deprecated transformers-based approach
π€ Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <[email protected]>
- models/model_3d_generator.py +111 -275
models/model_3d_generator.py
CHANGED
|
@@ -7,6 +7,7 @@ from typing import Union, Optional, Dict, Any
|
|
| 7 |
from pathlib import Path
|
| 8 |
import os
|
| 9 |
import logging
|
|
|
|
| 10 |
|
| 11 |
# Set up detailed logging for 3D generation
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -62,151 +63,38 @@ class Hunyuan3DGenerator:
|
|
| 62 |
return False
|
| 63 |
|
| 64 |
def load_model(self):
|
| 65 |
-
"""
|
| 66 |
if self.model is None:
|
| 67 |
-
logger.info("π Starting
|
| 68 |
|
| 69 |
try:
|
| 70 |
-
# Try to import
|
| 71 |
-
logger.info("π¦ Attempting to import
|
| 72 |
try:
|
| 73 |
-
from
|
| 74 |
-
|
| 75 |
-
logger.info("β
Hunyuan3D components imported successfully")
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
self.bg_remover = BackgroundRemover()
|
| 83 |
-
|
| 84 |
-
logger.info("β
Hunyuan3D pipeline loaded successfully")
|
| 85 |
|
| 86 |
except ImportError as import_error:
|
| 87 |
-
logger.error(f"β Failed to import
|
| 88 |
-
logger.info("
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
logger.info("π¦ Importing transformers components...")
|
| 92 |
-
from transformers import AutoModel, AutoProcessor
|
| 93 |
-
|
| 94 |
-
model_id = self.lite_model_id if self.use_lite else self.model_id
|
| 95 |
-
logger.info(f"π¦ Loading model: {model_id}")
|
| 96 |
-
|
| 97 |
-
# Check if model exists on HuggingFace
|
| 98 |
-
try:
|
| 99 |
-
from huggingface_hub import model_info
|
| 100 |
-
info = model_info(model_id)
|
| 101 |
-
logger.info(f"β
Model found on HuggingFace: {info.modelId}")
|
| 102 |
-
except Exception as hub_error:
|
| 103 |
-
logger.error(f"β Model not found on HuggingFace: {hub_error}")
|
| 104 |
-
logger.info("π Using fallback 3D generation")
|
| 105 |
-
self.model = "fallback"
|
| 106 |
-
return
|
| 107 |
-
|
| 108 |
-
# Load preprocessor
|
| 109 |
-
logger.info("π¦ Loading preprocessor...")
|
| 110 |
-
try:
|
| 111 |
-
self.preprocessor = AutoProcessor.from_pretrained(model_id)
|
| 112 |
-
logger.info("β
Preprocessor loaded successfully")
|
| 113 |
-
except Exception as proc_error:
|
| 114 |
-
logger.error(f"β Preprocessor loading failed: {proc_error}")
|
| 115 |
-
logger.info("π Using fallback mode")
|
| 116 |
-
self.model = "fallback"
|
| 117 |
-
return
|
| 118 |
-
|
| 119 |
-
# Load model with optimizations
|
| 120 |
-
torch_dtype = torch.float16 if self.device == "cuda" else torch.float32
|
| 121 |
-
logger.info(f"π¦ Using torch dtype: {torch_dtype}")
|
| 122 |
-
|
| 123 |
-
# Disable torch.compile to avoid dynamo issues
|
| 124 |
-
logger.info("π¦ Disabling torch compile to avoid dynamo issues...")
|
| 125 |
-
torch._dynamo.config.suppress_errors = True
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# Try loading with different strategies
|
| 130 |
-
loading_successful = False
|
| 131 |
-
|
| 132 |
-
# Strategy 1: Load directly to device
|
| 133 |
-
try:
|
| 134 |
-
logger.info("π¦ Strategy 1: Direct device loading...")
|
| 135 |
-
self.model = AutoModel.from_pretrained(
|
| 136 |
-
model_id,
|
| 137 |
-
torch_dtype=torch_dtype,
|
| 138 |
-
device_map={"": self.device},
|
| 139 |
-
low_cpu_mem_usage=True,
|
| 140 |
-
trust_remote_code=True
|
| 141 |
-
)
|
| 142 |
-
loading_successful = True
|
| 143 |
-
logger.info("β
Direct device loading successful")
|
| 144 |
-
except Exception as e1:
|
| 145 |
-
logger.error(f"β Strategy 1 failed: {e1}")
|
| 146 |
-
|
| 147 |
-
# Strategy 2: Load to CPU first
|
| 148 |
-
if not loading_successful:
|
| 149 |
-
try:
|
| 150 |
-
logger.info("π¦ Strategy 2: CPU-first loading...")
|
| 151 |
-
# Load model to CPU first to avoid meta tensor issues
|
| 152 |
-
self.model = AutoModel.from_pretrained(
|
| 153 |
-
model_id,
|
| 154 |
-
torch_dtype=torch.float32, # Use float32 for CPU loading
|
| 155 |
-
low_cpu_mem_usage=True,
|
| 156 |
-
device_map=None, # No device mapping initially
|
| 157 |
-
trust_remote_code=True
|
| 158 |
-
)
|
| 159 |
-
logger.info("β
3D model loaded to CPU")
|
| 160 |
-
|
| 161 |
-
# Now safely move to target device
|
| 162 |
-
logger.info(f"π¦ Moving model to target device: {self.device}")
|
| 163 |
-
try:
|
| 164 |
-
if self.device == "cuda":
|
| 165 |
-
# Convert to appropriate dtype for GPU
|
| 166 |
-
self.model = self.model.to(device=self.device, dtype=torch.float16)
|
| 167 |
-
logger.info("β
Model moved to CUDA with fp16")
|
| 168 |
-
else:
|
| 169 |
-
# Keep on CPU
|
| 170 |
-
self.model = self.model.to(device="cpu", dtype=torch.float32)
|
| 171 |
-
logger.info("β
Model kept on CPU with fp32")
|
| 172 |
-
loading_successful = True
|
| 173 |
-
|
| 174 |
-
except Exception as device_error:
|
| 175 |
-
logger.error(f"β Device movement failed: {device_error}")
|
| 176 |
-
logger.info("π Falling back to CPU...")
|
| 177 |
-
self.device = "cpu"
|
| 178 |
-
if self.model is not None:
|
| 179 |
-
self.model = self.model.to("cpu", dtype=torch.float32)
|
| 180 |
-
loading_successful = True
|
| 181 |
-
else:
|
| 182 |
-
logger.error("β Model is None, using fallback mode")
|
| 183 |
-
self.model = "fallback"
|
| 184 |
-
except Exception as e2:
|
| 185 |
-
logger.error(f"β Strategy 2 failed: {e2}")
|
| 186 |
-
|
| 187 |
-
# If all strategies failed, use fallback
|
| 188 |
-
if not loading_successful:
|
| 189 |
-
logger.error("β All loading strategies failed")
|
| 190 |
-
logger.info("π Using fallback 3D generation")
|
| 191 |
-
self.model = "fallback"
|
| 192 |
-
return
|
| 193 |
-
|
| 194 |
-
# Enable optimizations safely
|
| 195 |
-
logger.info("π¦ Applying model optimizations...")
|
| 196 |
-
if self.model != "fallback" and hasattr(self.model, 'enable_attention_slicing'):
|
| 197 |
-
self.model.enable_attention_slicing()
|
| 198 |
-
logger.info("β
Attention slicing enabled")
|
| 199 |
-
else:
|
| 200 |
-
logger.info("β οΈ Attention slicing not available")
|
| 201 |
|
| 202 |
-
logger.info("π 3D model loading completed successfully!")
|
| 203 |
-
|
| 204 |
except Exception as e:
|
| 205 |
-
logger.error(f"β Failed to
|
| 206 |
-
logger.error(f"β Error type: {type(e).__name__}")
|
| 207 |
logger.info("π Falling back to simple 3D generation...")
|
| 208 |
-
|
| 209 |
-
self.model = "fallback"
|
| 210 |
|
| 211 |
def image_to_3d(self,
|
| 212 |
image: Union[str, Image.Image, np.ndarray],
|
|
@@ -229,7 +117,7 @@ class Hunyuan3DGenerator:
|
|
| 229 |
logger.info("β
Model already loaded")
|
| 230 |
|
| 231 |
# If model loading failed, use fallback
|
| 232 |
-
if self.model == "
|
| 233 |
logger.info("π Using fallback 3D generation...")
|
| 234 |
return self._generate_fallback_3d(image)
|
| 235 |
|
|
@@ -237,124 +125,78 @@ class Hunyuan3DGenerator:
|
|
| 237 |
logger.info("πΌοΈ Preparing input image...")
|
| 238 |
if isinstance(image, str):
|
| 239 |
logger.info(f"πΌοΈ Loading image from path: {image}")
|
|
|
|
| 240 |
image = Image.open(image)
|
| 241 |
elif isinstance(image, np.ndarray):
|
| 242 |
logger.info("πΌοΈ Converting numpy array to PIL Image")
|
| 243 |
image = Image.fromarray(image)
|
|
|
|
|
|
|
| 244 |
else:
|
| 245 |
logger.info("πΌοΈ Input is already PIL Image")
|
|
|
|
|
|
|
| 246 |
|
| 247 |
-
|
| 248 |
-
logger.info(f"πΌοΈ Image mode: {image.mode}")
|
| 249 |
-
if image.mode != 'RGBA':
|
| 250 |
-
logger.info("πΌοΈ Converting image to RGBA mode")
|
| 251 |
-
image = image.convert('RGBA')
|
| 252 |
-
|
| 253 |
-
logger.info(f"πΌοΈ Final image size: {image.size}")
|
| 254 |
-
|
| 255 |
-
# Remove background if requested
|
| 256 |
-
if remove_background and image.mode == 'RGB':
|
| 257 |
-
logger.info("π Removing background from image...")
|
| 258 |
-
try:
|
| 259 |
-
if hasattr(self, 'bg_remover'):
|
| 260 |
-
# Use Hunyuan3D's background remover
|
| 261 |
-
image = self.bg_remover(image)
|
| 262 |
-
logger.info("β
Background removed using Hunyuan3D remover")
|
| 263 |
-
else:
|
| 264 |
-
# Use fallback background removal
|
| 265 |
-
image = self._remove_background(image)
|
| 266 |
-
logger.info("β
Background removed using fallback method")
|
| 267 |
-
except Exception as bg_error:
|
| 268 |
-
logger.error(f"β Background removal failed: {bg_error}")
|
| 269 |
-
logger.info("π Continuing with original image...")
|
| 270 |
|
| 271 |
-
# Check if we have the
|
| 272 |
-
if
|
| 273 |
-
|
| 274 |
-
logger.info("π§ Using Hunyuan3D pipeline for 3D generation...")
|
| 275 |
|
| 276 |
try:
|
| 277 |
-
# Generate 3D model using Hunyuan3D
|
| 278 |
-
logger.info("π Starting Hunyuan3D generation...")
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
-
#
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
logger.info(f"β
Mesh saved to: {mesh_path}")
|
| 289 |
|
| 290 |
-
return
|
| 291 |
else:
|
| 292 |
-
logger.error("β
|
| 293 |
-
raise Exception("
|
| 294 |
|
| 295 |
-
except Exception as
|
| 296 |
-
logger.error(f"β Hunyuan3D generation failed: {
|
| 297 |
logger.info("π Falling back to alternative generation...")
|
| 298 |
return self._generate_fallback_3d(image)
|
| 299 |
|
| 300 |
else:
|
| 301 |
-
#
|
| 302 |
-
logger.info("
|
| 303 |
-
|
| 304 |
-
# Resize for processing
|
| 305 |
-
logger.info("πΌοΈ Resizing image for processing (512x512)...")
|
| 306 |
-
image = image.resize((512, 512), Image.Resampling.LANCZOS)
|
| 307 |
-
logger.info("β
Image resized successfully")
|
| 308 |
-
|
| 309 |
-
# Process with model
|
| 310 |
-
logger.info("π§ Starting model inference...")
|
| 311 |
-
with torch.no_grad():
|
| 312 |
-
try:
|
| 313 |
-
# Preprocess image
|
| 314 |
-
logger.info("π Preprocessing image for model...")
|
| 315 |
-
inputs = self.preprocessor(images=image, return_tensors="pt")
|
| 316 |
-
logger.info(f"π Input tensor shape: {inputs['pixel_values'].shape if 'pixel_values' in inputs else 'unknown'}")
|
| 317 |
-
|
| 318 |
-
# Move inputs to device safely
|
| 319 |
-
logger.info(f"π Moving inputs to device: {self.device}")
|
| 320 |
-
try:
|
| 321 |
-
# Avoid device-related dynamo issues
|
| 322 |
-
device_str = str(self.device) # Convert to string to avoid torch.device in dynamo
|
| 323 |
-
inputs = {k: v.to(device_str) for k, v in inputs.items() if hasattr(v, 'to')}
|
| 324 |
-
logger.info("β
Inputs moved to device successfully")
|
| 325 |
-
except Exception as device_error:
|
| 326 |
-
logger.error(f"β Failed to move inputs to device: {device_error}")
|
| 327 |
-
raise device_error
|
| 328 |
-
|
| 329 |
-
# Generate 3D
|
| 330 |
-
logger.info("π Starting 3D generation inference...")
|
| 331 |
-
logger.info(f"π Parameters: steps={self.num_inference_steps}, guidance={self.guidance_scale}")
|
| 332 |
-
|
| 333 |
-
outputs = self.model.generate(
|
| 334 |
-
**inputs,
|
| 335 |
-
num_inference_steps=self.num_inference_steps,
|
| 336 |
-
guidance_scale=self.guidance_scale,
|
| 337 |
-
texture_resolution=texture_resolution
|
| 338 |
-
)
|
| 339 |
-
logger.info("β
3D generation completed successfully")
|
| 340 |
-
|
| 341 |
-
# Extract mesh
|
| 342 |
-
logger.info("π§ Extracting mesh from model outputs...")
|
| 343 |
-
mesh = self._extract_mesh(outputs)
|
| 344 |
-
logger.info("β
Mesh extraction completed")
|
| 345 |
-
|
| 346 |
-
except Exception as inference_error:
|
| 347 |
-
logger.error(f"β Model inference failed: {inference_error}")
|
| 348 |
-
logger.error(f"β Inference error type: {type(inference_error).__name__}")
|
| 349 |
-
raise inference_error
|
| 350 |
-
|
| 351 |
-
# Save mesh
|
| 352 |
-
logger.info("πΎ Saving generated mesh...")
|
| 353 |
-
mesh_path = self._save_mesh(mesh)
|
| 354 |
-
logger.info(f"β
Mesh saved to: {mesh_path}")
|
| 355 |
-
|
| 356 |
-
logger.info("π 3D generation process completed successfully!")
|
| 357 |
-
return mesh_path
|
| 358 |
|
| 359 |
except Exception as e:
|
| 360 |
logger.error(f"β 3D generation error: {e}")
|
|
@@ -387,40 +229,6 @@ class Hunyuan3DGenerator:
|
|
| 387 |
image.putdata(new_data)
|
| 388 |
return image
|
| 389 |
|
| 390 |
-
def _extract_mesh(self, model_outputs: Dict[str, Any]) -> trimesh.Trimesh:
|
| 391 |
-
"""Extract mesh from model outputs"""
|
| 392 |
-
# This would depend on actual Hunyuan3D output format
|
| 393 |
-
# Placeholder implementation
|
| 394 |
-
|
| 395 |
-
if 'vertices' in model_outputs and 'faces' in model_outputs:
|
| 396 |
-
vertices = model_outputs['vertices'].cpu().numpy()
|
| 397 |
-
faces = model_outputs['faces'].cpu().numpy()
|
| 398 |
-
|
| 399 |
-
# Create trimesh object
|
| 400 |
-
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
| 401 |
-
|
| 402 |
-
# Add texture if available
|
| 403 |
-
if 'texture' in model_outputs:
|
| 404 |
-
# Apply texture to mesh
|
| 405 |
-
pass
|
| 406 |
-
|
| 407 |
-
return mesh
|
| 408 |
-
else:
|
| 409 |
-
# Create a simple mesh if outputs are different
|
| 410 |
-
return self._create_simple_mesh()
|
| 411 |
-
|
| 412 |
-
def _create_simple_mesh(self) -> trimesh.Trimesh:
|
| 413 |
-
"""Create a simple placeholder mesh"""
|
| 414 |
-
# Create a simple sphere as placeholder
|
| 415 |
-
mesh = trimesh.creation.icosphere(subdivisions=3, radius=1.0)
|
| 416 |
-
|
| 417 |
-
# Add some variation
|
| 418 |
-
mesh.vertices += np.random.normal(0, 0.05, mesh.vertices.shape)
|
| 419 |
-
|
| 420 |
-
# Smooth the mesh
|
| 421 |
-
mesh = mesh.smoothed()
|
| 422 |
-
|
| 423 |
-
return mesh
|
| 424 |
|
| 425 |
def _generate_fallback_3d(self, image: Union[Image.Image, np.ndarray]) -> str:
|
| 426 |
"""Generate fallback 3D model when main model fails"""
|
|
@@ -494,6 +302,36 @@ class Hunyuan3DGenerator:
|
|
| 494 |
|
| 495 |
return mesh_path
|
| 496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
def text_to_3d(self, text_prompt: str) -> str:
|
| 498 |
"""Generate 3D model from text description"""
|
| 499 |
# First generate image, then convert to 3D
|
|
@@ -501,15 +339,13 @@ class Hunyuan3DGenerator:
|
|
| 501 |
raise NotImplementedError("Text to 3D requires image generation first")
|
| 502 |
|
| 503 |
def to(self, device: str):
|
| 504 |
-
"""
|
| 505 |
self.device = device
|
| 506 |
-
|
| 507 |
-
self.model.to(device)
|
| 508 |
|
| 509 |
def __del__(self):
|
| 510 |
"""Cleanup when object is destroyed"""
|
| 511 |
-
if self
|
| 512 |
-
del self.
|
| 513 |
-
if
|
| 514 |
-
|
| 515 |
-
torch.cuda.empty_cache()
|
|
|
|
| 7 |
from pathlib import Path
|
| 8 |
import os
|
| 9 |
import logging
|
| 10 |
+
import random
|
| 11 |
|
| 12 |
# Set up detailed logging for 3D generation
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 63 |
return False
|
| 64 |
|
| 65 |
def load_model(self):
|
| 66 |
+
"""Initialize Gradio client for Hunyuan3D API"""
|
| 67 |
if self.model is None:
|
| 68 |
+
logger.info("π Starting Hunyuan3D API client initialization...")
|
| 69 |
|
| 70 |
try:
|
| 71 |
+
# Try to import gradio_client
|
| 72 |
+
logger.info("π¦ Attempting to import gradio_client...")
|
| 73 |
try:
|
| 74 |
+
from gradio_client import Client, handle_file
|
| 75 |
+
logger.info("β
gradio_client imported successfully")
|
|
|
|
| 76 |
|
| 77 |
+
# Initialize Hunyuan3D client
|
| 78 |
+
logger.info("π Connecting to Hunyuan3D API...")
|
| 79 |
+
self.client = Client("tencent/Hunyuan3D-2.1")
|
| 80 |
+
self.handle_file = handle_file
|
| 81 |
+
self.model = "gradio_api"
|
| 82 |
|
| 83 |
+
logger.info("β
Hunyuan3D API client initialized successfully")
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
except ImportError as import_error:
|
| 86 |
+
logger.error(f"β Failed to import gradio_client: {import_error}")
|
| 87 |
+
logger.info("π‘ Please install gradio_client:")
|
| 88 |
+
logger.info(" pip install gradio_client")
|
| 89 |
+
logger.info("π Using fallback mode instead...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
self.model = "fallback_mode"
|
| 92 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
|
|
|
|
|
|
| 94 |
except Exception as e:
|
| 95 |
+
logger.error(f"β Failed to initialize Hunyuan3D API client: {e}")
|
|
|
|
| 96 |
logger.info("π Falling back to simple 3D generation...")
|
| 97 |
+
self.model = "fallback_mode"
|
|
|
|
| 98 |
|
| 99 |
def image_to_3d(self,
|
| 100 |
image: Union[str, Image.Image, np.ndarray],
|
|
|
|
| 117 |
logger.info("β
Model already loaded")
|
| 118 |
|
| 119 |
# If model loading failed, use fallback
|
| 120 |
+
if self.model == "fallback_mode":
|
| 121 |
logger.info("π Using fallback 3D generation...")
|
| 122 |
return self._generate_fallback_3d(image)
|
| 123 |
|
|
|
|
| 125 |
logger.info("πΌοΈ Preparing input image...")
|
| 126 |
if isinstance(image, str):
|
| 127 |
logger.info(f"πΌοΈ Loading image from path: {image}")
|
| 128 |
+
image_path = image
|
| 129 |
image = Image.open(image)
|
| 130 |
elif isinstance(image, np.ndarray):
|
| 131 |
logger.info("πΌοΈ Converting numpy array to PIL Image")
|
| 132 |
image = Image.fromarray(image)
|
| 133 |
+
# Save to temp file for gradio client
|
| 134 |
+
image_path = self._save_temp_image(image)
|
| 135 |
else:
|
| 136 |
logger.info("πΌοΈ Input is already PIL Image")
|
| 137 |
+
# Save to temp file for gradio client
|
| 138 |
+
image_path = self._save_temp_image(image)
|
| 139 |
|
| 140 |
+
logger.info(f"πΌοΈ Image mode: {image.mode}, size: {image.size}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
# Check if we have the Gradio API client
|
| 143 |
+
if self.model == "gradio_api" and hasattr(self, 'client'):
|
| 144 |
+
logger.info("π Using Hunyuan3D Gradio API for 3D generation...")
|
|
|
|
| 145 |
|
| 146 |
try:
|
| 147 |
+
# Generate 3D model using Hunyuan3D API
|
| 148 |
+
logger.info("π Starting Hunyuan3D API generation...")
|
| 149 |
+
|
| 150 |
+
# Use generation_all for both shape and texture
|
| 151 |
+
logger.info("π€ Calling generation_all API...")
|
| 152 |
+
result = self.client.predict(
|
| 153 |
+
image=self.handle_file(image_path),
|
| 154 |
+
mv_image_front=None,
|
| 155 |
+
mv_image_back=None,
|
| 156 |
+
mv_image_left=None,
|
| 157 |
+
mv_image_right=None,
|
| 158 |
+
steps=self.num_inference_steps,
|
| 159 |
+
guidance_scale=self.guidance_scale,
|
| 160 |
+
seed=random.randint(1, 10000),
|
| 161 |
+
octree_resolution=self.resolution,
|
| 162 |
+
check_box_rembg=remove_background,
|
| 163 |
+
num_chunks=8000,
|
| 164 |
+
randomize_seed=True,
|
| 165 |
+
api_name="/generation_all"
|
| 166 |
+
)
|
| 167 |
|
| 168 |
+
logger.info("β
API call completed successfully")
|
| 169 |
+
logger.info(f"π Result type: {type(result)}, length: {len(result) if isinstance(result, (list, tuple)) else 'N/A'}")
|
| 170 |
+
|
| 171 |
+
# Extract mesh file from result
|
| 172 |
+
# Result format: [shape_file, texture_file, html_output, mesh_stats, seed]
|
| 173 |
+
if isinstance(result, (list, tuple)) and len(result) >= 2:
|
| 174 |
+
shape_file = result[0] # Shape file path
|
| 175 |
+
texture_file = result[1] # Textured file path (if available)
|
| 176 |
+
|
| 177 |
+
# Use textured file if available, otherwise use shape file
|
| 178 |
+
mesh_file = texture_file if texture_file else shape_file
|
| 179 |
+
|
| 180 |
+
logger.info(f"β
Generated mesh file: {mesh_file}")
|
| 181 |
|
| 182 |
+
# Copy to our output location
|
| 183 |
+
output_path = self._save_output_mesh(mesh_file)
|
| 184 |
+
logger.info(f"β
Mesh saved to: {output_path}")
|
|
|
|
| 185 |
|
| 186 |
+
return output_path
|
| 187 |
else:
|
| 188 |
+
logger.error("β Unexpected result format from Hunyuan3D API")
|
| 189 |
+
raise Exception("Invalid API response format")
|
| 190 |
|
| 191 |
+
except Exception as api_error:
|
| 192 |
+
logger.error(f"β Hunyuan3D API generation failed: {api_error}")
|
| 193 |
logger.info("π Falling back to alternative generation...")
|
| 194 |
return self._generate_fallback_3d(image)
|
| 195 |
|
| 196 |
else:
|
| 197 |
+
# Fallback to simple 3D generation
|
| 198 |
+
logger.info("π No API client available, using fallback...")
|
| 199 |
+
return self._generate_fallback_3d(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
except Exception as e:
|
| 202 |
logger.error(f"β 3D generation error: {e}")
|
|
|
|
| 229 |
image.putdata(new_data)
|
| 230 |
return image
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
def _generate_fallback_3d(self, image: Union[Image.Image, np.ndarray]) -> str:
|
| 234 |
"""Generate fallback 3D model when main model fails"""
|
|
|
|
| 302 |
|
| 303 |
return mesh_path
|
| 304 |
|
| 305 |
+
def _save_temp_image(self, image: Image.Image) -> str:
|
| 306 |
+
"""Save PIL image to temporary file for gradio client"""
|
| 307 |
+
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
| 308 |
+
image_path = tmp.name
|
| 309 |
+
|
| 310 |
+
# Save image
|
| 311 |
+
image.save(image_path, 'PNG')
|
| 312 |
+
logger.info(f"πΎ Saved temp image to: {image_path}")
|
| 313 |
+
|
| 314 |
+
return image_path
|
| 315 |
+
|
| 316 |
+
def _save_output_mesh(self, source_mesh_path: str) -> str:
|
| 317 |
+
"""Copy generated mesh to our output location"""
|
| 318 |
+
import shutil
|
| 319 |
+
|
| 320 |
+
# Create output directory if it doesn't exist
|
| 321 |
+
output_dir = "/tmp/hunyuan3d_output"
|
| 322 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 323 |
+
|
| 324 |
+
# Generate unique filename
|
| 325 |
+
timestamp = tempfile.mktemp().split('/')[-1]
|
| 326 |
+
output_filename = f"hunyuan3d_mesh_{timestamp}.glb"
|
| 327 |
+
output_path = os.path.join(output_dir, output_filename)
|
| 328 |
+
|
| 329 |
+
# Copy the file
|
| 330 |
+
shutil.copy2(source_mesh_path, output_path)
|
| 331 |
+
logger.info(f"π Copied mesh from {source_mesh_path} to {output_path}")
|
| 332 |
+
|
| 333 |
+
return output_path
|
| 334 |
+
|
| 335 |
def text_to_3d(self, text_prompt: str) -> str:
|
| 336 |
"""Generate 3D model from text description"""
|
| 337 |
# First generate image, then convert to 3D
|
|
|
|
| 339 |
raise NotImplementedError("Text to 3D requires image generation first")
|
| 340 |
|
| 341 |
def to(self, device: str):
|
| 342 |
+
"""Update device preference"""
|
| 343 |
self.device = device
|
| 344 |
+
logger.info(f"π§ Device preference updated to: {device}")
|
|
|
|
| 345 |
|
| 346 |
def __del__(self):
|
| 347 |
"""Cleanup when object is destroyed"""
|
| 348 |
+
if hasattr(self, 'client'):
|
| 349 |
+
del self.client
|
| 350 |
+
if torch.cuda.is_available():
|
| 351 |
+
torch.cuda.empty_cache()
|
|
|