Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import PIL.Image | |
| import torch | |
| from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
| # Model and Processor Setup | |
| model_id = "gv-hf/paligemma2-3b-mix-448" | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| HF_KEY = os.getenv("HF_KEY") | |
| if not HF_KEY: | |
| raise ValueError("Please set the HF_KEY environment variable with your Hugging Face API token") | |
| # Load model and processor | |
| model = PaliGemmaForConditionalGeneration.from_pretrained( | |
| model_id, | |
| token=HF_KEY, | |
| trust_remote_code=True | |
| ).eval().to(device) | |
| processor = PaliGemmaProcessor.from_pretrained( | |
| model_id, | |
| token=HF_KEY, | |
| trust_remote_code=True | |
| ) | |
| # Inference Function | |
| def infer(image: PIL.Image.Image, text: str, max_new_tokens: int) -> str: | |
| inputs = processor(text=text, images=image, return_tensors="pt").to(device) | |
| with torch.inference_mode(): | |
| generated_ids = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=False | |
| ) | |
| result = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
| return result[0][len(text):].lstrip("\n") | |
| # Image Captioning (with user input for improvement) | |
| def generate_caption(image: PIL.Image.Image, caption_improvement: str) -> str: | |
| return infer(image, f"caption: {caption_improvement}", max_new_tokens=50) | |
| # Object Detection/Segmentation | |
| def parse_segmentation(input_image, input_text): | |
| out = infer(input_image, input_text, max_new_tokens=200) | |
| objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True) | |
| labels = set(obj.get('name') for obj in objs if obj.get('name')) | |
| color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)} | |
| highlighted_text = [(obj['content'], obj.get('name')) for obj in objs] | |
| annotated_img = ( | |
| input_image, | |
| [ | |
| ( | |
| obj['mask'] if obj.get('mask') is not None else obj['xyxy'], | |
| obj['name'] or '', | |
| ) | |
| for obj in objs | |
| if 'mask' in obj or 'xyxy' in obj | |
| ], | |
| ) | |
| has_annotations = bool(annotated_img[1]) | |
| return annotated_img | |
| # Helper functions for object detection/segmentation | |
| def _get_params(checkpoint): | |
| def transp(kernel): | |
| return np.transpose(kernel, (2, 3, 1, 0)) | |
| def conv(name): | |
| return { | |
| 'bias': checkpoint[name + '.bias'], | |
| 'kernel': transp(checkpoint[name + '.weight']), | |
| } | |
| def resblock(name): | |
| return { | |
| 'Conv_0': conv(name + '.0'), | |
| 'Conv_1': conv(name + '.2'), | |
| 'Conv_2': conv(name + '.4'), | |
| } | |
| return { | |
| '_embeddings': checkpoint['_vq_vae._embedding'], | |
| 'Conv_0': conv('decoder.0'), | |
| 'ResBlock_0': resblock('decoder.2.net'), | |
| 'ResBlock_1': resblock('decoder.3.net'), | |
| 'ConvTranspose_0': conv('decoder.4'), | |
| 'ConvTranspose_1': conv('decoder.6'), | |
| 'ConvTranspose_2': conv('decoder.8'), | |
| 'ConvTranspose_3': conv('decoder.10'), | |
| 'Conv_1': conv('decoder.12'), | |
| } | |
| def _quantized_values_from_codebook_indices(codebook_indices, embeddings): | |
| batch_size, num_tokens = codebook_indices.shape | |
| assert num_tokens == 16, codebook_indices.shape | |
| unused_num_embeddings, embedding_dim = embeddings.shape | |
| encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0) | |
| encodings = encodings.reshape((batch_size, 4, 4, embedding_dim)) | |
| return encodings | |
| def extract_objs(text, width, height, unique_labels=False): | |
| objs = [] | |
| seen = set() | |
| while text: | |
| m = _SEGMENT_DETECT_RE.match(text) | |
| if not m: | |
| break | |
| gs = list(m.groups()) | |
| before = gs.pop(0) | |
| name = gs.pop() | |
| y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]] | |
| y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width)) | |
| seg_indices = gs[4:20] | |
| if seg_indices[0] is None: | |
| mask = None | |
| else: | |
| seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32) | |
| m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0] | |
| m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1) | |
| m64 = PIL.Image.fromarray((m64 * 255).astype('uint8')) | |
| mask = np.zeros([height, width]) | |
| if y2 > y1 and x2 > x1: | |
| mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0 | |
| content = m.group() | |
| if before: | |
| objs.append(dict(content=before)) | |
| content = content[len(before):] | |
| while unique_labels and name in seen: | |
| name = (name or '') + "'" | |
| seen.add(name) | |
| objs.append(dict( | |
| content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name)) | |
| text = text[len(before) + len(content):] | |
| if text: | |
| objs.append(dict(content=text)) | |
| return objs | |
| # Gradio Interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# PaliGemma Multi-Modal App") | |
| gr.Markdown("Upload an image and explore its features using the PaliGemma model!") | |
| with gr.Tabs(): | |
| # Tab 1: Image Captioning | |
| with gr.Tab("Image Captioning"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| caption_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) | |
| caption_improvement_input = gr.Textbox(label="Improvement Input", placeholder="Enter description to improve caption") | |
| caption_btn = gr.Button("Generate Caption") | |
| with gr.Column(): | |
| caption_output = gr.Text(label="Generated Caption") | |
| caption_btn.click(fn=generate_caption, inputs=[caption_image, caption_improvement_input], outputs=[caption_output]) | |
| # Tab 2: Segment/Detect | |
| with gr.Tab("Segment/Detect"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| detect_image = gr.Image(type="pil", label="Upload Image", width=512, height=512) | |
| detect_text = gr.Textbox(label="Entities to Detect", placeholder="List entities to segment/detect") | |
| detect_btn = gr.Button("Detect/Segment") | |
| with gr.Column(): | |
| detect_output = gr.AnnotatedImage(label="Annotated Image") | |
| detect_btn.click(fn=parse_segmentation, inputs=[detect_image, detect_text], outputs=[detect_output]) | |
| # Launch the App | |
| if __name__ == "__main__": | |
| demo.queue(max_size=10).launch(debug=True) | |