import gradio as gr
from baseline.baseline_convnext import predict_convnext
from baseline.baseline_infer import predict_baseline
# --- Placeholder models (for future extensions) ---
def predict_placeholder_1(image):
if image is None:
return "Please upload an image."
return "Model 2 is not available yet. Please check back later."
def predict_placeholder_2(image):
if image is None:
return "Please upload an image."
return "Model 3 is not available yet. Please check back later."
# --- Main Prediction Logic ---
def predict(model_choice, image):
if model_choice == "Herbarium Species Classifier":
# Friend's ConvNeXt mix-stream CNN baseline
return predict_convnext(image)
elif model_choice == "Baseline (DINOv2 + LogReg)":
# Your plant-pretrained DINOv2 + Logistic Regression baseline
return predict_baseline(image)
elif model_choice == "Future Model 1 (Placeholder)":
return predict_placeholder_1(image)
elif model_choice == "Future Model 2 (Placeholder)":
return predict_placeholder_2(image)
else:
return "Invalid model selected."
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
with gr.Column(elem_id="app-wrapper"):
# Header
gr.Markdown(
"""
""",
elem_id="app-header",
)
# Badges row
gr.Markdown(
"""
Herbarium + Field images
ConvNeXtV2 mix-stream CNN
DINOv2 + Logistic Regression
""",
elem_id="badge-row",
)
# Main card
with gr.Row(elem_id="main-card"):
# Left side: model + image
with gr.Column(scale=1, elem_id="left-panel"):
model_selector = gr.Dropdown(
label="Select model",
choices=[
"Herbarium Species Classifier",
"Baseline (DINOv2 + LogReg)",
"Future Model 1 (Placeholder)",
"Future Model 2 (Placeholder)",
],
value="Herbarium Species Classifier",
)
gr.Markdown(
"""
Herbarium Species Classifier – end-to-end ConvNeXtV2 CNN.
Baseline – plant-pretrained DINOv2 features + logistic regression head.
""",
elem_id="model-help",
)
image_input = gr.Image(
type="pil",
label="Upload plant image",
)
submit_button = gr.Button("Classify 🌱", variant="primary")
# Right side: predictions
with gr.Column(scale=1, elem_id="right-panel"):
output_label = gr.Label(
label="Top 5 predictions",
num_top_classes=5,
)
submit_button.click(
fn=predict,
inputs=[model_selector, image_input],
outputs=output_label,
)
# Optional examples (keep empty if you don't have images)
gr.Examples(
examples=[],
inputs=image_input,
outputs=output_label,
fn=lambda img: predict("Herbarium Species Classifier", img),
cache_examples=False,
)
gr.Markdown(
"Built for the AML course – compare CNN vs. DINOv2 feature-extractor baselines.",
elem_id="footer",
)
if __name__ == "__main__":
demo.launch()