software-si commited on
Commit
d8a5c0b
·
verified ·
1 Parent(s): 65b2825

Add new CrossEncoder model

Browse files
Files changed (7) hide show
  1. README.md +340 -0
  2. config.json +38 -0
  3. model.safetensors +3 -0
  4. special_tokens_map.json +37 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +66 -0
  7. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - cross-encoder
5
+ - reranker
6
+ - generated_from_trainer
7
+ - dataset_size:9408
8
+ - loss:CrossEntropyLoss
9
+ datasets:
10
+ - software-si/horeca-recensioni-nli-it
11
+ pipeline_tag: text-classification
12
+ library_name: sentence-transformers
13
+ ---
14
+
15
+ # CrossEncoder
16
+
17
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model trained on the [horeca-recensioni-nli-it](https://huggingface.co/datasets/software-si/horeca-recensioni-nli-it) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text pair classification.
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+ - **Model Type:** Cross Encoder
23
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
24
+ - **Maximum Sequence Length:** 512 tokens
25
+ - **Number of Output Labels:** 3 labels
26
+ - **Training Dataset:**
27
+ - [horeca-recensioni-nli-it](https://huggingface.co/datasets/software-si/horeca-recensioni-nli-it)
28
+ <!-- - **Language:** Unknown -->
29
+ <!-- - **License:** Unknown -->
30
+
31
+ ### Model Sources
32
+
33
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
34
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
35
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
36
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
37
+
38
+ ## Usage
39
+
40
+ ### Direct Usage (Sentence Transformers)
41
+
42
+ First install the Sentence Transformers library:
43
+
44
+ ```bash
45
+ pip install -U sentence-transformers
46
+ ```
47
+
48
+ Then you can load this model and run inference.
49
+ ```python
50
+ from sentence_transformers import CrossEncoder
51
+
52
+ # Download from the 🤗 Hub
53
+ model = CrossEncoder("software-si/horeca-recensioni-ita-nli")
54
+ # Get scores for pairs of texts
55
+ pairs = [
56
+ [' colazione servita con cura, ampia e confortevole, stanza silenziosa e riposante, stanza polverosa e disordinata,', 'la camera era pulita'],
57
+ [' camera stretta, non adatta a soggiorni lunghi camera rumorosa e poco confortevole, camera con igiene insufficiente, grande attenzione alle esigenze degli ospiti, vasta scelta che accontenta tutti i gusti,', 'la colazione era buona'],
58
+ [' colazione abbondante e di qualità, bagno con residui poco igienici, poco spazio per spostarsi liberamente nessun disturbo acustico,', 'la camera era silenziosa'],
59
+ [' staff disponibile 24 ore su 24, musica proveniente dalle stanze vicine, camera di metratura confortevole,', 'il cliente ha apprezzato la colazione'],
60
+ [' servizio attento e personalizzato, tutto in ordine e pulito,', 'il livello di pulizia non era soddisfacente'],
61
+ ]
62
+ scores = model.predict(pairs)
63
+ print(scores.shape)
64
+ # (5, 3)
65
+ ```
66
+
67
+ <!--
68
+ ### Direct Usage (Transformers)
69
+
70
+ <details><summary>Click to see the direct usage in Transformers</summary>
71
+
72
+ </details>
73
+ -->
74
+
75
+ <!--
76
+ ### Downstream Usage (Sentence Transformers)
77
+
78
+ You can finetune this model on your own dataset.
79
+
80
+ <details><summary>Click to expand</summary>
81
+
82
+ </details>
83
+ -->
84
+
85
+ <!--
86
+ ### Out-of-Scope Use
87
+
88
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
89
+ -->
90
+
91
+ <!--
92
+ ## Bias, Risks and Limitations
93
+
94
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
95
+ -->
96
+
97
+ <!--
98
+ ### Recommendations
99
+
100
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
101
+ -->
102
+
103
+ ## Training Details
104
+
105
+ ### Training Dataset
106
+
107
+ #### horeca-recensioni-nli-it
108
+
109
+ * Dataset: [horeca-recensioni-nli-it](https://huggingface.co/datasets/software-si/horeca-recensioni-nli-it) at [620bed7](https://huggingface.co/datasets/software-si/horeca-recensioni-nli-it/tree/620bed76871c0680963624c74b7cd809adfa3f17)
110
+ * Size: 9,408 training samples
111
+ * Columns: <code>premises</code>, <code>hypothesis</code>, and <code>labels</code>
112
+ * Approximate statistics based on the first 1000 samples:
113
+ | | premises | hypothesis | labels |
114
+ |:--------|:-------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
115
+ | type | string | string | int |
116
+ | details | <ul><li>min: 52 characters</li><li>mean: 123.01 characters</li><li>max: 204 characters</li></ul> | <ul><li>min: 20 characters</li><li>mean: 31.72 characters</li><li>max: 52 characters</li></ul> | <ul><li>0: ~37.40%</li><li>1: ~35.70%</li><li>2: ~26.90%</li></ul> |
117
+ * Samples:
118
+ | premises | hypothesis | labels |
119
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------|:---------------|
120
+ | <code> poco spazio tra letto e mobili perfetta per chi cerca tranquillità, spazi interni ben mantenuti,</code> | <code>la camera era sporca</code> | <code>0</code> |
121
+ | <code> dolci e salati preparati al momento, camera rumorosa e poco confortevole, non c’era abbastanza spazio per aprire le valigie bagno con residui poco igienici,</code> | <code>la camera è spaziosa e comoda</code> | <code>0</code> |
122
+ | <code> totale mancanza di attenzione al cliente, camera trasandata e poco igienica, camera spaziosa e accogliente, frutta fresca e yogurt sempre disponibili, rumori fastidiosi dalle camere vicine,</code> | <code>il cliente è stato soddisfatto del servizio</code> | <code>0</code> |
123
+ * Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
124
+
125
+ ### Evaluation Dataset
126
+
127
+ #### horeca-recensioni-nli-it
128
+
129
+ * Dataset: [horeca-recensioni-nli-it](https://huggingface.co/datasets/software-si/horeca-recensioni-nli-it) at [620bed7](https://huggingface.co/datasets/software-si/horeca-recensioni-nli-it/tree/620bed76871c0680963624c74b7cd809adfa3f17)
130
+ * Size: 2,822 evaluation samples
131
+ * Columns: <code>premises</code>, <code>hypothesis</code>, and <code>labels</code>
132
+ * Approximate statistics based on the first 1000 samples:
133
+ | | premises | hypothesis | labels |
134
+ |:--------|:-------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
135
+ | type | string | string | int |
136
+ | details | <ul><li>min: 52 characters</li><li>mean: 122.86 characters</li><li>max: 205 characters</li></ul> | <ul><li>min: 20 characters</li><li>mean: 31.87 characters</li><li>max: 52 characters</li></ul> | <ul><li>0: ~36.30%</li><li>1: ~34.70%</li><li>2: ~29.00%</li></ul> |
137
+ * Samples:
138
+ | premises | hypothesis | labels |
139
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------|:---------------|
140
+ | <code> colazione servita con cura, ampia e confortevole, stanza silenziosa e riposante, stanza polverosa e disordinata,</code> | <code>la camera era pulita</code> | <code>0</code> |
141
+ | <code> camera stretta, non adatta a soggiorni lunghi camera rumorosa e poco confortevole, camera con igiene insufficiente, grande attenzione alle esigenze degli ospiti, vasta scelta che accontenta tutti i gusti,</code> | <code>la colazione era buona</code> | <code>1</code> |
142
+ | <code> colazione abbondante e di qualità, bagno con residui poco igienici, poco spazio per spostarsi liberamente nessun disturbo acustico,</code> | <code>la camera era silenziosa</code> | <code>1</code> |
143
+ * Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
144
+
145
+ ### Training Hyperparameters
146
+ #### Non-Default Hyperparameters
147
+
148
+ - `eval_strategy`: steps
149
+ - `per_device_train_batch_size`: 32
150
+ - `per_device_eval_batch_size`: 32
151
+ - `learning_rate`: 1e-05
152
+ - `num_train_epochs`: 20
153
+ - `warmup_steps`: 18816
154
+ - `bf16`: True
155
+ - `load_best_model_at_end`: True
156
+
157
+ #### All Hyperparameters
158
+ <details><summary>Click to expand</summary>
159
+
160
+ - `overwrite_output_dir`: False
161
+ - `do_predict`: False
162
+ - `eval_strategy`: steps
163
+ - `prediction_loss_only`: True
164
+ - `per_device_train_batch_size`: 32
165
+ - `per_device_eval_batch_size`: 32
166
+ - `per_gpu_train_batch_size`: None
167
+ - `per_gpu_eval_batch_size`: None
168
+ - `gradient_accumulation_steps`: 1
169
+ - `eval_accumulation_steps`: None
170
+ - `torch_empty_cache_steps`: None
171
+ - `learning_rate`: 1e-05
172
+ - `weight_decay`: 0.0
173
+ - `adam_beta1`: 0.9
174
+ - `adam_beta2`: 0.999
175
+ - `adam_epsilon`: 1e-08
176
+ - `max_grad_norm`: 1.0
177
+ - `num_train_epochs`: 20
178
+ - `max_steps`: -1
179
+ - `lr_scheduler_type`: linear
180
+ - `lr_scheduler_kwargs`: {}
181
+ - `warmup_ratio`: 0.0
182
+ - `warmup_steps`: 18816
183
+ - `log_level`: passive
184
+ - `log_level_replica`: warning
185
+ - `log_on_each_node`: True
186
+ - `logging_nan_inf_filter`: True
187
+ - `save_safetensors`: True
188
+ - `save_on_each_node`: False
189
+ - `save_only_model`: False
190
+ - `restore_callback_states_from_checkpoint`: False
191
+ - `no_cuda`: False
192
+ - `use_cpu`: False
193
+ - `use_mps_device`: False
194
+ - `seed`: 42
195
+ - `data_seed`: None
196
+ - `jit_mode_eval`: False
197
+ - `use_ipex`: False
198
+ - `bf16`: True
199
+ - `fp16`: False
200
+ - `fp16_opt_level`: O1
201
+ - `half_precision_backend`: auto
202
+ - `bf16_full_eval`: False
203
+ - `fp16_full_eval`: False
204
+ - `tf32`: None
205
+ - `local_rank`: 0
206
+ - `ddp_backend`: None
207
+ - `tpu_num_cores`: None
208
+ - `tpu_metrics_debug`: False
209
+ - `debug`: []
210
+ - `dataloader_drop_last`: False
211
+ - `dataloader_num_workers`: 0
212
+ - `dataloader_prefetch_factor`: None
213
+ - `past_index`: -1
214
+ - `disable_tqdm`: False
215
+ - `remove_unused_columns`: True
216
+ - `label_names`: None
217
+ - `load_best_model_at_end`: True
218
+ - `ignore_data_skip`: False
219
+ - `fsdp`: []
220
+ - `fsdp_min_num_params`: 0
221
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
222
+ - `fsdp_transformer_layer_cls_to_wrap`: None
223
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
224
+ - `parallelism_config`: None
225
+ - `deepspeed`: None
226
+ - `label_smoothing_factor`: 0.0
227
+ - `optim`: adamw_torch_fused
228
+ - `optim_args`: None
229
+ - `adafactor`: False
230
+ - `group_by_length`: False
231
+ - `length_column_name`: length
232
+ - `ddp_find_unused_parameters`: None
233
+ - `ddp_bucket_cap_mb`: None
234
+ - `ddp_broadcast_buffers`: False
235
+ - `dataloader_pin_memory`: True
236
+ - `dataloader_persistent_workers`: False
237
+ - `skip_memory_metrics`: True
238
+ - `use_legacy_prediction_loop`: False
239
+ - `push_to_hub`: False
240
+ - `resume_from_checkpoint`: None
241
+ - `hub_model_id`: None
242
+ - `hub_strategy`: every_save
243
+ - `hub_private_repo`: None
244
+ - `hub_always_push`: False
245
+ - `hub_revision`: None
246
+ - `gradient_checkpointing`: False
247
+ - `gradient_checkpointing_kwargs`: None
248
+ - `include_inputs_for_metrics`: False
249
+ - `include_for_metrics`: []
250
+ - `eval_do_concat_batches`: True
251
+ - `fp16_backend`: auto
252
+ - `push_to_hub_model_id`: None
253
+ - `push_to_hub_organization`: None
254
+ - `mp_parameters`:
255
+ - `auto_find_batch_size`: False
256
+ - `full_determinism`: False
257
+ - `torchdynamo`: None
258
+ - `ray_scope`: last
259
+ - `ddp_timeout`: 1800
260
+ - `torch_compile`: False
261
+ - `torch_compile_backend`: None
262
+ - `torch_compile_mode`: None
263
+ - `include_tokens_per_second`: False
264
+ - `include_num_input_tokens_seen`: False
265
+ - `neftune_noise_alpha`: None
266
+ - `optim_target_modules`: None
267
+ - `batch_eval_metrics`: False
268
+ - `eval_on_start`: False
269
+ - `use_liger_kernel`: False
270
+ - `liger_kernel_config`: None
271
+ - `eval_use_gather_object`: False
272
+ - `average_tokens_across_devices`: False
273
+ - `prompts`: None
274
+ - `batch_sampler`: batch_sampler
275
+ - `multi_dataset_batch_sampler`: proportional
276
+ - `router_mapping`: {}
277
+ - `learning_rate_mapping`: {}
278
+
279
+ </details>
280
+
281
+ ### Training Logs
282
+ | Epoch | Step | Training Loss | Validation Loss |
283
+ |:-------:|:----:|:-------------:|:---------------:|
284
+ | 1.3605 | 400 | 1.0237 | 1.0239 |
285
+ | 2.7211 | 800 | 1.022 | 1.0123 |
286
+ | 4.0816 | 1200 | 1.02 | 1.0210 |
287
+ | 5.4422 | 1600 | 1.018 | 1.0173 |
288
+ | 6.8027 | 2000 | 1.0215 | 1.0087 |
289
+ | 8.1633 | 2400 | 1.0143 | 1.0138 |
290
+ | 9.5238 | 2800 | 1.0146 | 1.0137 |
291
+ | 10.8844 | 3200 | 1.0135 | 1.0093 |
292
+ | 12.2449 | 3600 | 1.0134 | 1.0099 |
293
+ | 13.6054 | 4000 | 1.0085 | 1.0072 |
294
+ | 14.9660 | 4400 | 1.0086 | 1.0072 |
295
+ | 16.3265 | 4800 | 1.0046 | 1.0044 |
296
+
297
+
298
+ ### Framework Versions
299
+ - Python: 3.12.11
300
+ - Sentence Transformers: 5.1.1
301
+ - Transformers: 4.56.2
302
+ - PyTorch: 2.8.0+cu128
303
+ - Accelerate: 1.10.1
304
+ - Datasets: 4.1.1
305
+ - Tokenizers: 0.22.1
306
+
307
+ ## Citation
308
+
309
+ ### BibTeX
310
+
311
+ #### Sentence Transformers
312
+ ```bibtex
313
+ @inproceedings{reimers-2019-sentence-bert,
314
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
315
+ author = "Reimers, Nils and Gurevych, Iryna",
316
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
317
+ month = "11",
318
+ year = "2019",
319
+ publisher = "Association for Computational Linguistics",
320
+ url = "https://arxiv.org/abs/1908.10084",
321
+ }
322
+ ```
323
+
324
+ <!--
325
+ ## Glossary
326
+
327
+ *Clearly define terms in order to be accessible across audiences.*
328
+ -->
329
+
330
+ <!--
331
+ ## Model Card Authors
332
+
333
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
334
+ -->
335
+
336
+ <!--
337
+ ## Model Card Contact
338
+
339
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
340
+ -->
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0",
13
+ "1": "LABEL_1",
14
+ "2": "LABEL_2"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 3072,
18
+ "label2id": {
19
+ "LABEL_0": 0,
20
+ "LABEL_1": 1,
21
+ "LABEL_2": 2
22
+ },
23
+ "layer_norm_eps": 1e-12,
24
+ "max_position_embeddings": 512,
25
+ "model_type": "bert",
26
+ "num_attention_heads": 12,
27
+ "num_hidden_layers": 12,
28
+ "pad_token_id": 0,
29
+ "position_embedding_type": "absolute",
30
+ "sentence_transformers": {
31
+ "activation_fn": "torch.nn.modules.linear.Identity",
32
+ "version": "5.1.1"
33
+ },
34
+ "transformers_version": "4.56.2",
35
+ "type_vocab_size": 2,
36
+ "use_cache": true,
37
+ "vocab_size": 31102
38
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e72cd9692f6417800c032818bb4f81fb0a33c665ce2ef27db1d0387964adad2
3
+ size 439743484
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "101": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "102": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "103": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_len": 512,
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff