from typing import Any, List, Dict import torch from chronos import ChronosPipeline class EndpointHandler: def __init__(self) -> None: self.pipeline = ChronosPipeline.from_pretrained("amazon/chronos-t5-tiny") def __call__(self, data: Any) -> List[Dict[str, float]]: inputs = data.pop("inputs") # parameters = data.pop("parameters", {"prediction_length"}) forecast = self.pipeline.predict( torch.tensor(inputs["context"]), prediction_length=5 ) return {"forecast": forecast.tolist()}