| import torch | |
| import torch.nn as nn | |
| from einops import rearrange | |
| try: | |
| from .triton_flash_atn import _attention | |
| from .triton_bert_pading import pad_input, unpad_input | |
| except: | |
| print("FlashAttention is not installed.") | |
| class FlashAttention(nn.Module): | |
| """Implement the scaled dot product attention with softmax. | |
| Arguments | |
| --------- | |
| softmax_scale: The temperature to use for the softmax attention. | |
| (default: 1/sqrt(d_keys) where d_keys is computed at | |
| runtime) | |
| attention_dropout: The dropout rate to apply to the attention | |
| (default: 0.0) | |
| """ | |
| def __init__( | |
| self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None | |
| ): | |
| super().__init__() | |
| self.softmax_scale = softmax_scale | |
| self.dropout_p = attention_dropout | |
| def forward( | |
| self, | |
| qkv, | |
| key_padding_mask=None, | |
| causal=False, | |
| cu_seqlens=None, | |
| max_s=None, | |
| need_weights=False, | |
| ): | |
| """Implements the multihead softmax attention. | |
| Arguments | |
| --------- | |
| qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None | |
| if unpadded: (nnz, 3, h, d) | |
| key_padding_mask: a bool tensor of shape (B, S) | |
| """ | |
| assert not need_weights | |
| assert qkv.dtype in [torch.float16, torch.bfloat16] | |
| assert qkv.is_cuda | |
| if cu_seqlens is None: | |
| batch_size = qkv.shape[0] | |
| seqlen = qkv.shape[1] | |
| if key_padding_mask is None: | |
| qkv = rearrange(qkv, "b s ... -> (b s) ...") | |
| max_s = seqlen | |
| cu_seqlens = torch.arange( | |
| 0, | |
| (batch_size + 1) * seqlen, | |
| step=seqlen, | |
| dtype=torch.int32, | |
| device=qkv.device, | |
| ) | |
| output = _attention.apply( | |
| qkv, | |
| cu_seqlens, | |
| max_s, | |
| self.dropout_p if self.training else 0.0, | |
| self.softmax_scale, | |
| causal | |
| ) | |
| output = rearrange(output, "(b s) ... -> b s ...", b=batch_size) | |
| else: | |
| nheads = qkv.shape[-2] | |
| x = rearrange(qkv, "b s three h d -> b s (three h d)") | |
| x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) | |
| x_unpad = rearrange( | |
| x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads | |
| ) | |
| output_unpad = _attention.apply( | |
| x_unpad, | |
| cu_seqlens, | |
| max_s, | |
| self.dropout_p if self.training else 0.0, | |
| self.softmax_scale, | |
| causal | |
| ) | |
| output = rearrange( | |
| pad_input( | |
| rearrange(output_unpad, "nnz h d -> nnz (h d)"), | |
| indices, | |
| batch_size, | |
| seqlen, | |
| ), | |
| "b s (h d) -> b s h d", | |
| h=nheads, | |
| ) | |
| else: | |
| assert max_s is not None | |
| output = _attention.apply( | |
| qkv, | |
| cu_seqlens, | |
| max_s, | |
| self.dropout_p if self.training else 0.0, | |
| self.softmax_scale, | |
| causal | |
| ) | |
| return output, None | |