BEVFusion: Optimized for Mobile Deployment
Construct a bird’s eye view from sensors mounted on a vehicle
BeVFusion is a machine learning model for generating a birds eye view represenation from the sensors(cameras) mounted on a vehicle.
This model is an implementation of BEVFusion found here.
This repository provides scripts to run BEVFusion on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.driver_assistance
- Model Stats:
- Model checkpoint: camera-only-det.pth
- Input resolution: 1 x 6 x 3 x 256 x 704
- Number of parameters: 44M
- Model size: 171 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| BEVFusionEncoder1 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 708.238 ms | 0 - 9 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 525.75 ms | 12 - 32 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 618.867 ms | 32 - 52 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 426.634 ms | 12 - 29 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 509.758 ms | 20 - 35 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 361.572 ms | 14 - 26 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 432.524 ms | 48 - 59 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 691.279 ms | 12 - 12 MB | NPU | Use Export Script |
| BEVFusionEncoder1 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 827.021 ms | 97 - 97 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 3232.534 ms | 1 - 12 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 2576.966 ms | 10 - 26 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 2577.387 ms | 603 - 622 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 2364.562 ms | 36 - 53 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 2385.21 ms | 363 - 378 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 2085.74 ms | 17 - 27 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 2106.508 ms | 432 - 442 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 3353.63 ms | 17 - 17 MB | NPU | Use Export Script |
| BEVFusionEncoder2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 3246.258 ms | 1058 - 1058 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 719.618 ms | 609 - 619 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 590.193 ms | 609 - 628 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 455.06 ms | 588 - 608 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 507.97 ms | 609 - 631 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 375.86 ms | 563 - 577 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 374.426 ms | 609 - 619 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 332.706 ms | 602 - 616 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 701.353 ms | 610 - 610 MB | NPU | Use Export Script |
| BEVFusionEncoder3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 514.489 ms | 610 - 610 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 14.617 ms | 18 - 28 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 8.893 ms | 18 - 37 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 9.41 ms | 32 - 52 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 7.792 ms | 10 - 23 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 8.054 ms | 11 - 22 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 6.816 ms | 18 - 29 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 7.099 ms | 31 - 41 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 11.815 ms | 19 - 19 MB | NPU | Use Export Script |
| BEVFusionEncoder4 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 12.059 ms | 19 - 19 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 23.669 ms | 1 - 11 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 9.665 ms | 5 - 23 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 9.934 ms | 15 - 34 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_CONTEXT_BINARY | 7.628 ms | 5 - 19 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | PRECOMPILED_QNN_ONNX | 7.928 ms | 12 - 25 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_CONTEXT_BINARY | 5.732 ms | 5 - 16 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | PRECOMPILED_QNN_ONNX | 6.197 ms | 14 - 25 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 13.143 ms | 5 - 5 MB | NPU | Use Export Script |
| BEVFusionDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 13.322 ms | 23 - 23 MB | NPU | Use Export Script |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[bevfusion-det]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.bevfusion_det.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.bevfusion_det.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.bevfusion_det.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.bevfusion_det import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on BEVFusion's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of BEVFusion can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
- BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
