new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

Weak Cube R-CNN: Weakly Supervised 3D Detection using only 2D Bounding Boxes

Monocular 3D object detection is an essential task in computer vision, and it has several applications in robotics and virtual reality. However, 3D object detectors are typically trained in a fully supervised way, relying extensively on 3D labeled data, which is labor-intensive and costly to annotate. This work focuses on weakly-supervised 3D detection to reduce data needs using a monocular method that leverages a singlecamera system over expensive LiDAR sensors or multi-camera setups. We propose a general model Weak Cube R-CNN, which can predict objects in 3D at inference time, requiring only 2D box annotations for training by exploiting the relationship between 2D projections of 3D cubes. Our proposed method utilizes pre-trained frozen foundation 2D models to estimate depth and orientation information on a training set. We use these estimated values as pseudo-ground truths during training. We design loss functions that avoid 3D labels by incorporating information from the external models into the loss. In this way, we aim to implicitly transfer knowledge from these large foundation 2D models without having access to 3D bounding box annotations. Experimental results on the SUN RGB-D dataset show increased performance in accuracy compared to an annotation time equalized Cube R-CNN baseline. While not precise for centimetre-level measurements, this method provides a strong foundation for further research.

  • 3 authors
·
Apr 17, 2025

Weak Proxies are Sufficient and Preferable for Fairness with Missing Sensitive Attributes

Evaluating fairness can be challenging in practice because the sensitive attributes of data are often inaccessible due to privacy constraints. The go-to approach that the industry frequently adopts is using off-the-shelf proxy models to predict the missing sensitive attributes, e.g. Meta [Alao et al., 2021] and Twitter [Belli et al., 2022]. Despite its popularity, there are three important questions unanswered: (1) Is directly using proxies efficacious in measuring fairness? (2) If not, is it possible to accurately evaluate fairness using proxies only? (3) Given the ethical controversy over inferring user private information, is it possible to only use weak (i.e. inaccurate) proxies in order to protect privacy? Our theoretical analyses show that directly using proxy models can give a false sense of (un)fairness. Second, we develop an algorithm that is able to measure fairness (provably) accurately with only three properly identified proxies. Third, we show that our algorithm allows the use of only weak proxies (e.g. with only 68.85%accuracy on COMPAS), adding an extra layer of protection on user privacy. Experiments validate our theoretical analyses and show our algorithm can effectively measure and mitigate bias. Our results imply a set of practical guidelines for practitioners on how to use proxies properly. Code is available at github.com/UCSC-REAL/fair-eval.

  • 5 authors
·
Oct 6, 2022

WeakSTIL: Weak whole-slide image level stromal tumor infiltrating lymphocyte scores are all you need

We present WeakSTIL, an interpretable two-stage weak label deep learning pipeline for scoring the percentage of stromal tumor infiltrating lymphocytes (sTIL%) in H&E-stained whole-slide images (WSIs) of breast cancer tissue. The sTIL% score is a prognostic and predictive biomarker for many solid tumor types. However, due to the high labeling efforts and high intra- and interobserver variability within and between expert annotators, this biomarker is currently not used in routine clinical decision making. WeakSTIL compresses tiles of a WSI using a feature extractor pre-trained with self-supervised learning on unlabeled histopathology data and learns to predict precise sTIL% scores for each tile in the tumor bed by using a multiple instance learning regressor that only requires a weak WSI-level label. By requiring only a weak label, we overcome the large annotation efforts required to train currently existing TIL detection methods. We show that WeakSTIL is at least as good as other TIL detection methods when predicting the WSI-level sTIL% score, reaching a coefficient of determination of 0.45pm0.15 when compared to scores generated by an expert pathologist, and an AUC of 0.89pm0.05 when treating it as the clinically interesting sTIL-high vs sTIL-low classification task. Additionally, we show that the intermediate tile-level predictions of WeakSTIL are highly interpretable, which suggests that WeakSTIL pays attention to latent features related to the number of TILs and the tissue type. In the future, WeakSTIL may be used to provide consistent and interpretable sTIL% predictions to stratify breast cancer patients into targeted therapy arms.

  • 6 authors
·
Sep 13, 2021

AutoWS-Bench-101: Benchmarking Automated Weak Supervision with 100 Labels

Weak supervision (WS) is a powerful method to build labeled datasets for training supervised models in the face of little-to-no labeled data. It replaces hand-labeling data with aggregating multiple noisy-but-cheap label estimates expressed by labeling functions (LFs). While it has been used successfully in many domains, weak supervision's application scope is limited by the difficulty of constructing labeling functions for domains with complex or high-dimensional features. To address this, a handful of methods have proposed automating the LF design process using a small set of ground truth labels. In this work, we introduce AutoWS-Bench-101: a framework for evaluating automated WS (AutoWS) techniques in challenging WS settings -- a set of diverse application domains on which it has been previously difficult or impossible to apply traditional WS techniques. While AutoWS is a promising direction toward expanding the application-scope of WS, the emergence of powerful methods such as zero-shot foundation models reveals the need to understand how AutoWS techniques compare or cooperate with modern zero-shot or few-shot learners. This informs the central question of AutoWS-Bench-101: given an initial set of 100 labels for each task, we ask whether a practitioner should use an AutoWS method to generate additional labels or use some simpler baseline, such as zero-shot predictions from a foundation model or supervised learning. We observe that in many settings, it is necessary for AutoWS methods to incorporate signal from foundation models if they are to outperform simple few-shot baselines, and AutoWS-Bench-101 promotes future research in this direction. We conclude with a thorough ablation study of AutoWS methods.

  • 10 authors
·
Aug 30, 2022