Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLocation of a Sample of GeV and Optical Outbursts in the Jets of Blazars
The exact location of the gamma-ray emitting region in blazar jets has long been a matter of debate. However, the location has important implications about the emission processes, geometric and physical parameters of the jet, as well as the nature of interaction of the jet with the interstellar and intergalactic medium. Diverse conclusions have been drawn by various authors based on a variety of methods applied to different data sets of many blazars, e.g., the location is less than 0.1 pc from the central engine within the broad line region (BLR) or a few or tens of pc downstream beyond the dusty torus or at some intermediate distance. Here we use a method, established in a previous work, in which the location of the GeV/optical emission is determined using the ratio of energy dissipated during contemporaneous outbursts at those wave bands. We apply it to a total of 47 multi-wavelength outbursts in 10 blazars. We find that the location of the GeV/optical emission is beyond the BLR for all cases. This result is consistent with other studies, in which the location has been determined for a large sample of blazars. We compare the location determined by our method for several GeV outbursts of multiple blazars to that obtained by other authors using different methods. We find that our results are consistent in such one-to-one comparison in most cases, for which the required data were available.
Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images
Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays.
NeRF as Non-Distant Environment Emitter in Physics-based Inverse Rendering
Physics-based inverse rendering aims to jointly optimize shape, materials, and lighting from captured 2D images. Here lighting is an important part of achieving faithful light transport simulation. While the environment map is commonly used as the lighting model in inverse rendering, we show that its distant lighting assumption leads to spatial invariant lighting, which can be an inaccurate approximation in real-world inverse rendering. We propose to use NeRF as a spatially varying environment lighting model and build an inverse rendering pipeline using NeRF as the non-distant environment emitter. By comparing our method with the environment map on real and synthetic datasets, we show that our NeRF-based emitter models the scene lighting more accurately and leads to more accurate inverse rendering. Project page and video: https://nerfemitterpbir.github.io/.
Testing the extended corona model with the optical/UV reverberation mapping of the accretion disk
The illumination of the accretion disks is frequently studied assuming that the incident X-ray flux is a point-like source. The approach is referred as lamppost model.The most recent computations of the X-ray reprocessing by the disk take into account the departure from the simple lamppost models. However, in computations of the incident flux thermalization and subsequent re-emission in the optical-UV band the lamppost approximation is most frequently assumed. We test if the UV-optical reverberation mapping and time delay measurements are sensitive to this assumption. We assume that the incident radiation originates from a region extended along the symmetry axis. To model this, we adopt a simple setup by representing the emission as two lamps irradiating the disk simultaneously from two different heights. We then compare the resulting predictions with those obtained for a single lamppost located at an intermediate height. We show at the basis of the transfer function that the deviation of the wavelength-dependent delay curve shows at most a difference of 20% in comparison to a single lamppost, assuming the black hole mass of 10^8 M_{odot}, Eddington ratio 1, and the location of the lamps at 5 and 100 rg. The maximum deviation happens for the lamp luminosity ratio sim3. When simulating light curves for a two-lamp setup and a standard lamppost with the same black hole mass and a sampling rate of 0.1 days, we find no measurable differences in the ICCF profiles between the two setups. Larger black hole mass and considerably lower Eddington ratio would allow to see larger differences between a single lamppost and a two-lampost model. UV/optical reverberation mapping is not very sensitive to the vertical extension of the corona.
GaSLight: Gaussian Splats for Spatially-Varying Lighting in HDR
We present GaSLight, a method that generates spatially-varying lighting from regular images. Our method proposes using HDR Gaussian Splats as light source representation, marking the first time regular images can serve as light sources in a 3D renderer. Our two-stage process first enhances the dynamic range of images plausibly and accurately by leveraging the priors embedded in diffusion models. Next, we employ Gaussian Splats to model 3D lighting, achieving spatially variant lighting. Our approach yields state-of-the-art results on HDR estimations and their applications in illuminating virtual objects and scenes. To facilitate the benchmarking of images as light sources, we introduce a novel dataset of calibrated and unsaturated HDR to evaluate images as light sources. We assess our method using a combination of this novel dataset and an existing dataset from the literature. Project page: https://lvsn.github.io/gaslight/
An X-ray Significantly Variable, Luminous, Type 2 Quasar at z = 2.99 with a Massive Host Galaxy
We present a comprehensive X-ray analysis and spectral energy distribution (SED) fitting of WISEA J171419.96+602724.6, an extremely luminous type 2 quasar at z = 2.99. The source was suggested as a candidate Compton-thick (column density N_{rm H}>1.5 times 10^{24} cm^{-2}) quasar by a short XMM-Newton observation in 2011. We recently observed the source with deep NuSTAR and XMM-Newton exposures in 2021 and found that the source has a lower obscuration of N_{rm H}sim5 times 10^{22} cm^{-2} with an about four times lower flux. The two epochs of observations suggested that the source was significantly variable in X-ray obscuration, flux, and intrinsic luminosity at 2-3~sigma in less than 2.5 years (in the source rest frame). We performed SED fitting of this source using CIGALE thanks to its great availability of multiwavelength data (from hard X-rays to radio). The source is very luminous with a bolometric luminosity of L_{rm BOL}sim 2.5 times 10^{47} erg s^{-1}. Its host galaxy has a huge star formation rate (SFR) of sim1280 Solar mass yr^{-1} and a huge stellar mass of sim1.1 times 10^{12} Solar mass. The correlation between the SFR and stellar mass of this source is consistent with what was measured in the high-z quasars. It is also consistent with what was measured in the main-sequence star-forming galaxies, suggesting that the presence of the active nucleus in our target does not enhance or suppress the SFR of its host galaxy. The source is an Infrared hyper-luminous, obscured galaxy with significant amount of hot dust in its torus and shares many similar properties with hot, dust obscured galaxies.
Beyond the Pixel: a Photometrically Calibrated HDR Dataset for Luminance and Color Prediction
Light plays an important role in human well-being. However, most computer vision tasks treat pixels without considering their relationship to physical luminance. To address this shortcoming, we introduce the Laval Photometric Indoor HDR Dataset, the first large-scale photometrically calibrated dataset of high dynamic range 360{\deg} panoramas. Our key contribution is the calibration of an existing, uncalibrated HDR Dataset. We do so by accurately capturing RAW bracketed exposures simultaneously with a professional photometric measurement device (chroma meter) for multiple scenes across a variety of lighting conditions. Using the resulting measurements, we establish the calibration coefficients to be applied to the HDR images. The resulting dataset is a rich representation of indoor scenes which displays a wide range of illuminance and color, and varied types of light sources. We exploit the dataset to introduce three novel tasks, where: per-pixel luminance, per-pixel color and planar illuminance can be predicted from a single input image. Finally, we also capture another smaller photometric dataset with a commercial 360{\deg} camera, to experiment on generalization across cameras. We are optimistic that the release of our datasets and associated code will spark interest in physically accurate light estimation within the community. Dataset and code are available at https://lvsn.github.io/beyondthepixel/.
Improving Lens Flare Removal with General Purpose Pipeline and Multiple Light Sources Recovery
When taking images against strong light sources, the resulting images often contain heterogeneous flare artifacts. These artifacts can importantly affect image visual quality and downstream computer vision tasks. While collecting real data pairs of flare-corrupted/flare-free images for training flare removal models is challenging, current methods utilize the direct-add approach to synthesize data. However, these methods do not consider automatic exposure and tone mapping in image signal processing pipeline (ISP), leading to the limited generalization capability of deep models training using such data. Besides, existing methods struggle to handle multiple light sources due to the different sizes, shapes and illuminance of various light sources. In this paper, we propose a solution to improve the performance of lens flare removal by revisiting the ISP and remodeling the principle of automatic exposure in the synthesis pipeline and design a more reliable light sources recovery strategy. The new pipeline approaches realistic imaging by discriminating the local and global illumination through convex combination, avoiding global illumination shifting and local over-saturation. Our strategy for recovering multiple light sources convexly averages the input and output of the neural network based on illuminance levels, thereby avoiding the need for a hard threshold in identifying light sources. We also contribute a new flare removal testing dataset containing the flare-corrupted images captured by ten types of consumer electronics. The dataset facilitates the verification of the generalization capability of flare removal methods. Extensive experiments show that our solution can effectively improve the performance of lens flare removal and push the frontier toward more general situations.
Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors
Geolocating images of a ground-level scene entails estimating the location on Earth where the picture was taken, in absence of GPS or other location metadata. Typically, methods are evaluated by measuring the Great Circle Distance (GCD) between a predicted location and ground truth. However, this measurement is limited because it only evaluates a single point, not estimates of regions or score heatmaps. This is especially important in applications to rural, wilderness and under-sampled areas, where finding the exact location may not be possible, and when used in aggregate systems that progressively narrow down locations. In this paper, we introduce a novel metric, Recall vs Area (RvA), which measures the accuracy of estimated distributions of locations. RvA treats image geolocation results similarly to document retrieval, measuring recall as a function of area: For a ranked list of (possibly non-contiguous) predicted regions, we measure the accumulated area required for the region to contain the ground truth coordinate. This produces a curve similar to a precision-recall curve, where "precision" is replaced by square kilometers area, allowing evaluation of performance for different downstream search area budgets. Following directly from this view of the problem, we then examine a simple ensembling approach to global-scale image geolocation, which incorporates information from multiple sources to help address domain shift, and can readily incorporate multiple models, attribute predictors, and data sources. We study its effectiveness by combining the geolocation models GeoEstimation and the current SOTA GeoCLIP, with attribute predictors based on ORNL LandScan and ESA-CCI Land Cover. We find significant improvements in image geolocation for areas that are under-represented in the training set, particularly non-urban areas, on both Im2GPS3k and Street View images.
First Cosmology Results Using Type Ia Supernovae From the Dark Energy Survey: Photometric Pipeline and Light Curve Data Release
We present griz light curves of 251 Type Ia Supernovae (SNe Ia) from the first 3 years of the Dark Energy Survey Supernova Program's (DES-SN) spectroscopically classified sample. The photometric pipeline described in this paper produces the calibrated fluxes and associated uncertainties used in the cosmological parameter analysis (Brout et al. 2018-SYS, DES Collaboration et al. 2018) by employing a scene modeling approach that simultaneously forward models a variable transient flux and temporally constant host galaxy. We inject artificial point sources onto DECam images to test the accuracy of our photometric method. Upon comparison of input and measured artificial supernova fluxes, we find flux biases peak at 3 mmag. We require corrections to our photometric uncertainties as a function of host galaxy surface brightness at the transient location, similar to that seen by the DES Difference Imaging Pipeline used to discover transients. The public release of the light curves can be found at https://des.ncsa.illinois.edu/releases/sn.
Detecting LHC Neutrinos at Surface Level
The first direct detection of neutrinos at the LHC not only marks the beginning of a novel collider neutrino program at CERN but also motivates considering additional neutrino detectors to fully exploit the associated physics potential. We investigate the feasibility and physics potential of neutrino experiments located at the surface-level. A topographic desk study was performed to identify all points at which the LHC's neutrino beams exit the earth. The closest location lies about 9 km east of the CMS interaction point, at the bottom of Lake Geneva. Several detectors to be placed at this location are considered, including a water Cherenkov detector and an emulsion detector. The detector concepts are introduced, and projections for their contribution to the LHC forward neutrino program and searches for dark sector particles are presented. However, the dilution of the neutrino flux over distance reduces the neutrino yield significantly, limiting the physics potential of surface-level detectors compared to ones closer to the interaction point, including the proposed FPF.
Are Local Features All You Need for Cross-Domain Visual Place Recognition?
Visual Place Recognition is a task that aims to predict the coordinates of an image (called query) based solely on visual clues. Most commonly, a retrieval approach is adopted, where the query is matched to the most similar images from a large database of geotagged photos, using learned global descriptors. Despite recent advances, recognizing the same place when the query comes from a significantly different distribution is still a major hurdle for state of the art retrieval methods. Examples are heavy illumination changes (e.g. night-time images) or substantial occlusions (e.g. transient objects). In this work we explore whether re-ranking methods based on spatial verification can tackle these challenges, following the intuition that local descriptors are inherently more robust than global features to domain shifts. To this end, we provide a new, comprehensive benchmark on current state of the art models. We also introduce two new demanding datasets with night and occluded queries, to be matched against a city-wide database. Code and datasets are available at https://github.com/gbarbarani/re-ranking-for-VPR.
Factorized Inverse Path Tracing for Efficient and Accurate Material-Lighting Estimation
Inverse path tracing has recently been applied to joint material and lighting estimation, given geometry and multi-view HDR observations of an indoor scene. However, it has two major limitations: path tracing is expensive to compute, and ambiguities exist between reflection and emission. Our Factorized Inverse Path Tracing (FIPT) addresses these challenges by using a factored light transport formulation and finds emitters driven by rendering errors. Our algorithm enables accurate material and lighting optimization faster than previous work, and is more effective at resolving ambiguities. The exhaustive experiments on synthetic scenes show that our method (1) outperforms state-of-the-art indoor inverse rendering and relighting methods particularly in the presence of complex illumination effects; (2) speeds up inverse path tracing optimization to less than an hour. We further demonstrate robustness to noisy inputs through material and lighting estimates that allow plausible relighting in a real scene. The source code is available at: https://github.com/lwwu2/fipt
RUBIES: a complete census of the bright and red distant Universe with JWST/NIRSpec
We present the Red Unknowns: Bright Infrared Extragalactic Survey (RUBIES), providing JWST/NIRSpec spectroscopy of red sources selected across ~150 arcmin^2 from public JWST/NIRCam imaging in the UDS and EGS fields. RUBIES novel observing strategy offers a well-quantified selection function: the survey is optimised to reach high (>70%) completeness for bright and red (F150W-F444W>2) sources that are very rare. To place these rare sources in context, we simultaneously observe a reference sample of the 2<z<7 galaxy population, sampling sources at a rate that is inversely proportional to their number density in the 3D space of F444W magnitude, F150W-F444W colour, and photometric redshift. In total, RUBIES observes ~3000 targets across 1<z_{phot}<10 with both the PRISM and G395M dispersers, and ~1500 targets at z_{phot}>3 using only the G395M disperser. The RUBIES data reveal a highly diverse population of red sources that span a broad redshift range (z_{spec}sim1-9), with photometric redshift scatter and outlier fraction that are 3 times higher than for similarly bright sources that are less red. This diversity is not apparent from the photometric SEDs. Only spectroscopy reveals that the SEDs encompass a mixture of galaxies with dust-obscured star formation, extreme line emission, a lack of star formation indicating early quenching, and luminous active galactic nuclei. As a first demonstration of our broader selection function we compare the stellar masses and rest-frame U-V colours of the red sources and our reference sample: red sources are typically more massive (M_*sim10^{10-11.5} M_odot) across all redshifts. However, we find that the most massive systems span a wide range in U-V colour. We describe our data reduction procedure and data quality, and publicly release the reduced RUBIES data and vetted spectroscopic redshifts of the first half of the survey through the DJA.
First Light And Reionisation Epoch Simulations (FLARES) II: The Photometric Properties of High-Redshift Galaxies
We present the photometric properties of galaxies in the First Light and Reionisation Epoch Simulations (FLARES). The simulations trace the evolution of galaxies in a range of overdensities through the Epoch of Reionistion (EoR). With a novel weighting scheme we combine these overdensities, extending significantly the dynamic range of observed composite distribution functions compared to periodic simulation boxes. FLARES predicts a significantly larger number of intrinsically bright galaxies, which can be explained through a simple model linking dust-attenuation to the metal content of the interstellar medium, using a line-of-sight (LOS) extinction model. With this model we present the photometric properties of the FLARES galaxies for z in [5,10]. We show that the ultraviolet (UV) luminosity function (LF) matches the observations at all redshifts. The function is fit by Schechter and double power-law forms, with the latter being favoured at these redshifts by the FLARES composite UV LF. We also present predictions for the UV continuum slope as well as the attenuation in the UV. The impact of environment on the UV LF is also explored, with the brightest galaxies forming in the densest environments. We then present the line luminosity and equivalent widths of some prominent nebular emission lines arising from the galaxies, finding rough agreement with available observations. We also look at the relative contribution of obscured and unobscured star formation, finding comparable contributions at these redshifts.
See through the Dark: Learning Illumination-affined Representations for Nighttime Occupancy Prediction
Occupancy prediction aims to estimate the 3D spatial distribution of occupied regions along with their corresponding semantic labels. Existing vision-based methods perform well on daytime benchmarks but struggle in nighttime scenarios due to limited visibility and challenging lighting conditions. To address these challenges, we propose LIAR, a novel framework that learns illumination-affined representations. LIAR first introduces Selective Low-light Image Enhancement (SLLIE), which leverages the illumination priors from daytime scenes to adaptively determine whether a nighttime image is genuinely dark or sufficiently well-lit, enabling more targeted global enhancement. Building on the illumination maps generated by SLLIE, LIAR further incorporates two illumination-aware components: 2D Illumination-guided Sampling (2D-IGS) and 3D Illumination-driven Projection (3D-IDP), to respectively tackle local underexposure and overexposure. Specifically, 2D-IGS modulates feature sampling positions according to illumination maps, assigning larger offsets to darker regions and smaller ones to brighter regions, thereby alleviating feature degradation in underexposed areas. Subsequently, 3D-IDP enhances semantic understanding in overexposed regions by constructing illumination intensity fields and supplying refined residual queries to the BEV context refinement process. Extensive experiments on both real and synthetic datasets demonstrate the superior performance of LIAR under challenging nighttime scenarios. The source code and pretrained models are available https://github.com/yanzq95/LIAR{here}.
Red, hot, and very metal poor: extreme properties of a massive accreting black hole in the first 500 Myr
The James Webb Space Telescope (JWST) has recently discovered a new population of objects at high redshift referred to as `Little Red Dots' (LRDs). Their nature currently remains elusive, despite their surprisingly high inferred number densities. This emerging population of red point-like sources is reshaping our view of the early Universe and may shed light on the formation of high-redshift supermassive black holes. Here we present a spectroscopically confirmed LRD CANUCS-LRD-z8.6 at z_{rm spec}=8.6319pm 0.0005 hosting an Active Galactic Nucleus (AGN), using JWST data. This source shows the typical spectral shape of an LRD (blue UV and red optical continuum, unresolved in JWST imaging), along with broad Hbeta line emission, detection of high-ionization emission lines (CIV, NIV]) and very high electron temperature indicative of the presence of AGN. This is also combined with a very low metallicity (Z<0.1 Z_odot). The presence of all these diverse features in one source makes CANUCS-LRD-z8.6 unique. We show that the inferred black hole mass of CANUCS-LRD-z8.6 (M_{rm BH}=1.0^{+0.6}_{-0.4}times 10^{8}rm ~M_odot) strongly challenges current standard theoretical models and simulations of black hole formation, and forces us to adopt `ad hoc' prescriptions. Indeed if massive seeds, or light seeds with super-Eddington accretion, are considered, the observed BH mass of CANUCS-LRD-z8.6 at z=8.6 can be reproduced. Moreover, the black hole is over-massive compared to its host, relative to the local M_{rm BH}-M_* relations, pointing towards an earlier and faster evolution of the black hole compared to its host galaxy.
Systematic Bias in Ionizing Radiation Escape Fraction Measurements from Foreground Large-Scale Structures
We investigate the relationship between the Lyman-alpha (Lya) forest transmission in the intergalactic medium (IGM) and the environmental density of galaxies, focusing on its implications for the measurement of ionizing radiation escape fractions. Using a sample of 268 spectroscopically confirmed background galaxies at 2.7<z<3.0 and a galaxy density map at z~2.5 within the COSMOS field, we measure the Lya transmission photometrically, leveraging the multiwavelength data available from the COSMOS2020 catalog. Our results reveal a weak but statistically significant positive correlation between Lya optical depth and galaxy density contrast, suggesting that overdense regions are enriched in neutral gas, which could bias escape fraction measurements. This emphasizes the need to account for the large-scale structure of the IGM in analyses of ionizing radiation escape fractions, and highlights the advantages of a photometric approach for increasing the number of sampled lines of sight across large fields. The photometric redshifts provided by upcoming all-sky surveys, such as Euclid, will make it possible to account for this effect across widely separated fields.
AIM 2020: Scene Relighting and Illumination Estimation Challenge
We review the AIM 2020 challenge on virtual image relighting and illumination estimation. This paper presents the novel VIDIT dataset used in the challenge and the different proposed solutions and final evaluation results over the 3 challenge tracks. The first track considered one-to-one relighting; the objective was to relight an input photo of a scene with a different color temperature and illuminant orientation (i.e., light source position). The goal of the second track was to estimate illumination settings, namely the color temperature and orientation, from a given image. Lastly, the third track dealt with any-to-any relighting, thus a generalization of the first track. The target color temperature and orientation, rather than being pre-determined, are instead given by a guide image. Participants were allowed to make use of their track 1 and 2 solutions for track 3. The tracks had 94, 52, and 56 registered participants, respectively, leading to 20 confirmed submissions in the final competition stage.
NeILF++: Inter-Reflectable Light Fields for Geometry and Material Estimation
We present a novel differentiable rendering framework for joint geometry, material, and lighting estimation from multi-view images. In contrast to previous methods which assume a simplified environment map or co-located flashlights, in this work, we formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF). The key insight of the proposed method is the union of the incident and outgoing light fields through physically-based rendering and inter-reflections between surfaces, making it possible to disentangle the scene geometry, material, and lighting from image observations in a physically-based manner. The proposed incident light and inter-reflection framework can be easily applied to other NeRF systems. We show that our method can not only decompose the outgoing radiance into incident lights and surface materials, but also serve as a surface refinement module that further improves the reconstruction detail of the neural surface. We demonstrate on several datasets that the proposed method is able to achieve state-of-the-art results in terms of geometry reconstruction quality, material estimation accuracy, and the fidelity of novel view rendering.
Deep view of the intracluster light in the Coma cluster of galaxies
Detection and study of the intracluster light in rich clusters of galaxies has been a problem of long standing challenge and interest. Using the lowest surface brightness images of the Coma cluster of galaxies in the g and r bands, from the Halos and Environment of Nearby Galaxies (HERON) Coma Cluster Project, we obtained the most extensive image of intracluster light (ICL) in a single cluster to date, spreading over 1.5 Mpc from the cluster core. The unprecedented wealth of spectroscopic data made publicly available by the Dark Energy Spectroscopic Instrument (DESI) Early Data Release, complemented with a compilation from the NASA/IPAC Extragalactic Database and the literature, enabled the identification of 2,157 galaxy members within Coma, from which 42 distinct groups were identified. The synergy between these high-quality data allowed us to: 1) calculate ICL fractions of 19.9pm0.5\% and 19.6pm0.6\% in the g and r bands, respectively, consistent with a dynamically active cluster, 2) unveil Coma's faintest tidal features, and 3) provide a comprehensive picture of the dynamics and interactions within this complex system. Our findings indicate that the ICL connects several of these groups in a filamentous network, from which we infer the ongoing dynamical processes. In particular, we identified a faint stellar bridge linking the core of Coma with the galaxy NGC 4839, providing compelling evidence that this galaxy has already traversed the central region of the cluster.
1FLAT: a Firmamento-based catalog of AGN in Fermi-LAT high Galactic latitude γ-ray sources
We present a systematic reassessment of 5,062 high-Galactic latitude gamma-ray sources from the Fermi-LAT 4FGL-DR4 catalog using Firmamento, a web-based platform for multi-frequency source discovery and analysis. Our goal is to provide an independent evaluation of LAT gamma-ray source associations through alternative spectral and spatial methods that combine recent and legacy survey data, supplemented by human supervision of spectral energy distributions (SEDs), source morphology, flux variability, and template-based comparisons. Firmamento confirms the 4FGL-DR4 and 4LAC-DR3 counterparts or unassociated sources in 4,493 cases (88.8%), demonstrating the robustness of both approaches. Beyond this general agreement, we identify 421 new blazar counterparts among previously unassociated sources, thereby reducing the fraction of unidentified extragalactic Fermi-LAT sources from 25% to 17%. In addition, in 64 cases we find alternative blazar associations, while in 49 instances we do not confirm the 4FGL-DR4 association. For all confirmed blazar counterparts we provide homogeneous estimates of synchrotron peak frequency and peak flux using machine-learning and template-based methods; these agree with 4LAC-DR3 values in most cases, though significant discrepancies appear for a few dozen sources, often due to improved X-ray coverage. The primary outcome of this work is the 1st Firmamento LAT AGN table (1FLAT), made publicly available through the Firmamento platform (https://firmamento.nyuad.nyu.edu), where all related multi-wavelength data and images are available. The project involved extensive manual validation and benefited from the active participation of graduate and undergraduate students, highlighting the platform's value for both research and education.
Unveiling two deeply embedded young protostars in the S68N Class 0 protostellar core with JWST/NIRSpec
The near-infrared (NIR) emission of the youngest protostars still needs to be characterized to better understand the evolution of their accretion and ejection activity. We analyze James Webb Space Telescope NIRSpec 1.7 -- 5.3 mum observations of two deeply embedded sources in the S68N protostellar core in Serpens. The North Central (NC) source exhibits a highly obscured spectrum (A_K ~ 4.8 mag) that is modeled with a pre-main-sequence photosphere and a hot disk component. The photospheric parameters are consistent with a young, low-mass photosphere, as suggested by the low surface gravity, log g of 1.95 pm 0.15 cm s^{-2}. The hot disk suggests that accretion onto the central protostellar embryo is ongoing, although prototypical accretion-tracing emission lines HI are not detected. The South Central (SC) source, which is even more embedded (A_K ~ 8 mag; no continuum is detected shortward of 3.6 mum) appears to be driving the large-scale S68N protostellar outflow, and launches a collimated hot molecular jet detected in \Ht and CO ro-vibrational lines. Shock modeling of the \Ht (ro)vibrational lines establishes that fast C-type shocks (geq 30 km s^{-1}), with high pre-shock density (geq 10^7 cm^{-3}), and strong magnetic field (b ~ 3--10, where B = b,times,textrm{n_{H} (cm^{-3})},muG) best match the data. The bright CO fundamental line forest suggests energetic excitation, with the contribution of non-LTE effects, ie irradiation pumping. Detected OH and CH^{+} ro-vibrational lines support this hypothesis. These two Class 0 protostars seem to be in very young evolutionary stages and still have to acquire the bulk of their final stellar masses. These results demonstrate that JWST enables unprecedented diagnostics of these first stages of the protostellar evolutionary phase.
