- LED: LLM Enhanced Open-Vocabulary Object Detection without Human Curated Data Generation Large foundation models trained on large-scale vision-language data can boost Open-Vocabulary Object Detection (OVD) via synthetic training data, yet the hand-crafted pipelines often introduce bias and overfit to specific prompts. We sidestep this issue by directly fusing hidden states from Large Language Models (LLMs) into detectors-an avenue surprisingly under-explored. This paper presents a systematic method to enhance visual grounding by utilizing decoder layers of the LLM of an MLLM. We introduce a zero-initialized cross-attention adapter to enable efficient knowledge fusion from LLMs to object detectors, a new approach called LED (LLM Enhanced Open-Vocabulary Object Detection). We find that intermediate LLM layers already encode rich spatial semantics; adapting only the early layers yields most of the gain. With Swin-T as the vision encoder, Qwen2-0.5B + LED lifts GroundingDINO by 3.82 % on OmniLabel at just 8.7 % extra GFLOPs, and a larger vision backbone pushes the improvement to 6.22 %. Extensive ablations on adapter variants, LLM scales and fusion depths further corroborate our design. 6 authors · Mar 17
- LED-Merging: Mitigating Safety-Utility Conflicts in Model Merging with Location-Election-Disjoint Fine-tuning pre-trained Large Language Models (LLMs) for specialized tasks incurs substantial computational and data costs. While model merging offers a training-free solution to integrate multiple task-specific models, existing methods suffer from safety-utility conflicts where enhanced general capabilities degrade safety safeguards. We identify two root causes: neuron misidentification due to simplistic parameter magnitude-based selection, and cross-task neuron interference during merging. To address these challenges, we propose LED-Merging, a three-stage framework that Locates task-specific neurons via gradient-based attribution, dynamically Elects critical neurons through multi-model importance fusion, and Disjoints conflicting updates through parameter isolation. Extensive experiments on Llama-3-8B, Mistral-7B, and Llama2-13B demonstrate that LED-Merging effectively reduces harmful response rates, showing a 31.4\% decrease on Llama-3-8B-Instruct on HarmBench, while simultaneously preserving 95\% of utility performance, such as achieving 52.39\% accuracy on GSM8K. LED-Merging resolves safety-utility conflicts and provides a lightweight, training-free paradigm for constructing reliable multi-task LLMs. Code is available at https://github.com/MqLeet/LED-Merging{GitHub}. 5 authors · Feb 23
32 LEDITS: Real Image Editing with DDPM Inversion and Semantic Guidance Recent large-scale text-guided diffusion models provide powerful image-generation capabilities. Currently, a significant effort is given to enable the modification of these images using text only as means to offer intuitive and versatile editing. However, editing proves to be difficult for these generative models due to the inherent nature of editing techniques, which involves preserving certain content from the original image. Conversely, in text-based models, even minor modifications to the text prompt frequently result in an entirely distinct result, making attaining one-shot generation that accurately corresponds to the users intent exceedingly challenging. In addition, to edit a real image using these state-of-the-art tools, one must first invert the image into the pre-trained models domain - adding another factor affecting the edit quality, as well as latency. In this exploratory report, we propose LEDITS - a combined lightweight approach for real-image editing, incorporating the Edit Friendly DDPM inversion technique with Semantic Guidance, thus extending Semantic Guidance to real image editing, while harnessing the editing capabilities of DDPM inversion as well. This approach achieves versatile edits, both subtle and extensive as well as alterations in composition and style, while requiring no optimization nor extensions to the architecture. 2 authors · Jul 2, 2023 1
24 LEDITS++: Limitless Image Editing using Text-to-Image Models Text-to-image diffusion models have recently received increasing interest for their astonishing ability to produce high-fidelity images from solely text inputs. Subsequent research efforts aim to exploit and apply their capabilities to real image editing. However, existing image-to-image methods are often inefficient, imprecise, and of limited versatility. They either require time-consuming fine-tuning, deviate unnecessarily strongly from the input image, and/or lack support for multiple, simultaneous edits. To address these issues, we introduce LEDITS++, an efficient yet versatile and precise textual image manipulation technique. LEDITS++'s novel inversion approach requires no tuning nor optimization and produces high-fidelity results with a few diffusion steps. Second, our methodology supports multiple simultaneous edits and is architecture-agnostic. Third, we use a novel implicit masking technique that limits changes to relevant image regions. We propose the novel TEdBench++ benchmark as part of our exhaustive evaluation. Our results demonstrate the capabilities of LEDITS++ and its improvements over previous methods. The project page is available at https://leditsplusplus-project.static.hf.space . 7 authors · Nov 28, 2023 2
- ARLED: Leveraging LED-based ARMAN Model for Abstractive Summarization of Persian Long Documents The increasing volume of textual data poses challenges in reading and comprehending large documents, particularly for scholars who need to extract useful information from research articles. Automatic text summarization has emerged as a powerful tool to condense lengthy documents into concise and informative summaries. Depending on the approach used, text summarization can be categorized as either extractive or abstractive. While extractive methods are commonly used due to their simplicity, they often miss important information. On the other hand, Abstractive Summarization can generate more coherent and informative summaries by understanding the underlying meaning of the text. Abstractive techniques have gained attention in various languages, and recent advancements have been achieved through pre-training models such as BERT, BART, and T5. However, the challenge of summarizing long documents remains, and alternative models like Longformer have been introduced to address this limitation. In this context, this paper focuses on abstractive summarization in the Persian language. The authors introduce a new dataset of 300,000 full-text Persian papers obtained from the Ensani website and apply the ARMAN model, based on the Longformer architecture, to generate summaries. The experimental results demonstrate promising performance in Persian text summarization. The paper provides a comprehensive overview of related work, discusses the methodology, presents the experimental results, and concludes with future research directions. 4 authors · Mar 13
- CTRL-ALT-LED: Leaking Data from Air-Gapped Computers via Keyboard LEDs Using the keyboard LEDs to send data optically was proposed in 2002 by Loughry and Umphress [1] (Appendix A). In this paper we extensively explore this threat in the context of a modern cyber-attack with current hardware and optical equipment. In this type of attack, an advanced persistent threat (APT) uses the keyboard LEDs (Caps-Lock, Num-Lock and Scroll-Lock) to encode information and exfiltrate data from airgapped computers optically. Notably, this exfiltration channel is not monitored by existing data leakage prevention (DLP) systems. We examine this attack and its boundaries for today's keyboards with USB controllers and sensitive optical sensors. We also introduce smartphone and smartwatch cameras as components of malicious insider and 'evil maid' attacks. We provide the necessary scientific background on optical communication and the characteristics of modern USB keyboards at the hardware and software level, and present a transmission protocol and modulation schemes. We implement the exfiltration malware, discuss its design and implementation issues, and evaluate it with different types of keyboards. We also test various receivers, including light sensors, remote cameras, 'extreme' cameras, security cameras, and smartphone cameras. Our experiment shows that data can be leaked from air-gapped computers via the keyboard LEDs at a maximum bit rate of 3000 bit/sec per LED given a light sensor as a receiver, and more than 120 bit/sec if smartphones are used. The attack doesn't require any modification of the keyboard at hardware or firmware levels. 4 authors · Jul 10, 2019
- Crowd Guilds: Worker-led Reputation and Feedback on Crowdsourcing Platforms Crowd workers are distributed and decentralized. While decentralization is designed to utilize independent judgment to promote high-quality results, it paradoxically undercuts behaviors and institutions that are critical to high-quality work. Reputation is one central example: crowdsourcing systems depend on reputation scores from decentralized workers and requesters, but these scores are notoriously inflated and uninformative. In this paper, we draw inspiration from historical worker guilds (e.g., in the silk trade) to design and implement crowd guilds: centralized groups of crowd workers who collectively certify each other's quality through double-blind peer assessment. A two-week field experiment compared crowd guilds to a traditional decentralized crowd work model. Crowd guilds produced reputation signals more strongly correlated with ground-truth worker quality than signals available on current crowd working platforms, and more accurate than in the traditional model. 28 authors · Nov 4, 2016
- TopoLedgerBERT: Topological Learning of Ledger Description Embeddings using Siamese BERT-Networks This paper addresses a long-standing problem in the field of accounting: mapping company-specific ledger accounts to a standardized chart of accounts. We propose a novel solution, TopoLedgerBERT, a unique sentence embedding method devised specifically for ledger account mapping. This model integrates hierarchical information from the charts of accounts into the sentence embedding process, aiming to accurately capture both the semantic similarity and the hierarchical structure of the ledger accounts. In addition, we introduce a data augmentation strategy that enriches the training data and, as a result, increases the performance of our proposed model. Compared to benchmark methods, TopoLedgerBERT demonstrates superior performance in terms of accuracy and mean reciprocal rank. 3 authors · Apr 19, 2024
- A Survey of Distributed Ledger Technology for IoT Verticals The Internet of Things (IoT) and Distributed ledger technology (DLT) have significantly changed our daily lives. Due to their distributed operational environment and naturally decentralized applications, the convergence of these two technologies indicates a more lavish arrangement for the future. This article develops a comprehensive survey to investigate and illustrate state-of-the-art DLT for various IoT use cases, from smart homes to autonomous vehicles and smart cities. We develop a novel framework for conducting a systematic and comprehensive review of DLT over IoT by extending the knowledge graph approach. With relevant insights from this review, we extract innovative and pragmatic techniques to DLT design that enable high-performance, sustainable, and highly scalable IoT systems. Our findings support designing an end-to-end IoT-native DLT architecture for the future that fully coordinates network-assisted functionalities. 4 authors · Aug 22, 2022
- SybilQuorum: Open Distributed Ledgers Through Trust Networks The Sybil attack plagues all peer-to-peer systems, and modern open distributed ledgers employ a number of tactics to prevent it from proof of work, or other resources such as space, stake or memory, to traditional admission control in permissioned settings. With SybilQuorum we propose an alternative approach to securing an open distributed ledger against Sybil attacks, and ensuring consensus amongst honest participants, leveraging social network based Sybil defences. We show how nodes expressing their trust relationships through the ledger can bootstrap and operate a value system, and general transaction system, and how Sybil attacks are thwarted. We empirically evaluate our system as a secure Federated Byzantine Agreement System, and extend the theory of those systems to do so. 2 authors · Jun 28, 2019
- The Uli Dataset: An Exercise in Experience Led Annotation of oGBV Online gender based violence has grown concomitantly with adoption of the internet and social media. Its effects are worse in the Global majority where many users use social media in languages other than English. The scale and volume of conversations on the internet has necessitated the need for automated detection of hate speech, and more specifically gendered abuse. There is, however, a lack of language specific and contextual data to build such automated tools. In this paper we present a dataset on gendered abuse in three languages- Hindi, Tamil and Indian English. The dataset comprises of tweets annotated along three questions pertaining to the experience of gender abuse, by experts who identify as women or a member of the LGBTQIA community in South Asia. Through this dataset we demonstrate a participatory approach to creating datasets that drive AI systems. 25 authors · Nov 15, 2023
- TrueChain: Highly Performant Decentralized Public Ledger In this paper we present the initial design of Minerva consensus protocol for Truechain and other technical details. Currently, it is widely believed in the blockchain community that a public chain cannot simultaneously achieve high performance, decentralization and security. This is true in the case of a Nakamoto chain (low performance) or a delegated proof of stake chain (partially centralized), which are the most popular block chain solutions at time of writing. Our consensus design enjoys the same consistency, liveness, transaction finality and security guarantee, a de-facto with the Hybrid Consensus. We go on to propose the idea of a new virtual machine on top of Ethereum which adds permissioned-chain based transaction processing capabilities in a permissionless setting. We also use the idea of data sharding and speculative transactions, and evaluation of smart contracts in a sharding friendly virtual machine. Finally, we will briefly discuss our fundamentally ASIC resistant mining algorithm, Truehash. 5 authors · May 3, 2018
- Scalable Zero-shot Entity Linking with Dense Entity Retrieval This paper introduces a conceptually simple, scalable, and highly effective BERT-based entity linking model, along with an extensive evaluation of its accuracy-speed trade-off. We present a two-stage zero-shot linking algorithm, where each entity is defined only by a short textual description. The first stage does retrieval in a dense space defined by a bi-encoder that independently embeds the mention context and the entity descriptions. Each candidate is then re-ranked with a cross-encoder, that concatenates the mention and entity text. Experiments demonstrate that this approach is state of the art on recent zero-shot benchmarks (6 point absolute gains) and also on more established non-zero-shot evaluations (e.g. TACKBP-2010), despite its relative simplicity (e.g. no explicit entity embeddings or manually engineered mention tables). We also show that bi-encoder linking is very fast with nearest neighbour search (e.g. linking with 5.9 million candidates in 2 milliseconds), and that much of the accuracy gain from the more expensive cross-encoder can be transferred to the bi-encoder via knowledge distillation. Our code and models are available at https://github.com/facebookresearch/BLINK. 5 authors · Nov 9, 2019
1 Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method. 11 authors · Sep 15, 2016
- Inclusive Easy-to-Read Generation for Individuals with Cognitive Impairments Ensuring accessibility for individuals with cognitive impairments is essential for autonomy, self-determination, and full citizenship. However, manual Easy-to-Read (ETR) text adaptations are slow, costly, and difficult to scale, limiting access to crucial information in healthcare, education, and civic life. AI-driven ETR generation offers a scalable solution but faces key challenges, including dataset scarcity, domain adaptation, and balancing lightweight learning of Large Language Models (LLMs). In this paper, we introduce ETR-fr, the first dataset for ETR text generation fully compliant with European ETR guidelines. We implement parameter-efficient fine-tuning on PLMs and LLMs to establish generative baselines. To ensure high-quality and accessible outputs, we introduce an evaluation framework based on automatic metrics supplemented by human assessments. The latter is conducted using a 36-question evaluation form that is aligned with the guidelines. Overall results show that PLMs perform comparably to LLMs and adapt effectively to out-of-domain texts. 11 authors · Oct 1
- Are Language Models More Like Libraries or Like Librarians? Bibliotechnism, the Novel Reference Problem, and the Attitudes of LLMs Are LLMs cultural technologies like photocopiers or printing presses, which transmit information but cannot create new content? A challenge for this idea, which we call bibliotechnism, is that LLMs generate novel text. We begin with a defense of bibliotechnism, showing how even novel text may inherit its meaning from original human-generated text. We then argue that bibliotechnism faces an independent challenge from examples in which LLMs generate novel reference, using new names to refer to new entities. Such examples could be explained if LLMs were not cultural technologies but had beliefs, desires, and intentions. According to interpretationism in the philosophy of mind, a system has such attitudes if and only if its behavior is well explained by the hypothesis that it does. Interpretationists may hold that LLMs have attitudes, and thus have a simple solution to the novel reference problem. We emphasize, however, that interpretationism is compatible with very simple creatures having attitudes and differs sharply from views that presuppose these attitudes require consciousness, sentience, or intelligence (topics about which we make no claims). 2 authors · Jan 9, 2024
- Safe Learning-Based Control of Elastic Joint Robots via Control Barrier Functions Ensuring safety is of paramount importance in physical human-robot interaction applications. This requires both adherence to safety constraints defined on the system state, as well as guaranteeing compliant behavior of the robot. If the underlying dynamical system is known exactly, the former can be addressed with the help of control barrier functions. The incorporation of elastic actuators in the robot's mechanical design can address the latter requirement. However, this elasticity can increase the complexity of the resulting system, leading to unmodeled dynamics, such that control barrier functions cannot directly ensure safety. In this paper, we mitigate this issue by learning the unknown dynamics using Gaussian process regression. By employing the model in a feedback linearizing control law, the safety conditions resulting from control barrier functions can be robustified to take into account model errors, while remaining feasible. In order to enforce them on-line, we formulate the derived safety conditions in the form of a second-order cone program. We demonstrate our proposed approach with simulations on a two-degree-of-freedom planar robot with elastic joints. 4 authors · Dec 1, 2022
- Algorithmic Extremism: Examining YouTube's Rabbit Hole of Radicalization The role that YouTube and its behind-the-scenes recommendation algorithm plays in encouraging online radicalization has been suggested by both journalists and academics alike. This study directly quantifies these claims by examining the role that YouTube's algorithm plays in suggesting radicalized content. After categorizing nearly 800 political channels, we were able to differentiate between political schemas in order to analyze the algorithm traffic flows out and between each group. After conducting a detailed analysis of recommendations received by each channel type, we refute the popular radicalization claims. To the contrary, these data suggest that YouTube's recommendation algorithm actively discourages viewers from visiting radicalizing or extremist content. Instead, the algorithm is shown to favor mainstream media and cable news content over independent YouTube channels with slant towards left-leaning or politically neutral channels. Our study thus suggests that YouTube's recommendation algorithm fails to promote inflammatory or radicalized content, as previously claimed by several outlets. 2 authors · Dec 24, 2019
- Russian Financial Statements Database: A firm-level collection of the universe of financial statements The Russian Financial Statements Database (RFSD) is an open, harmonized collection of annual unconsolidated financial statements of the universe of Russian firms in 2011-2023. It is the first open data set with information on every active firm in the country, including non-filing firms. With 56.6 million geolocated firm-year observations gathered from two official sources, the RFSD features multiple end-user quality-of-life improvements such as data imputation, statement articulation, harmonization across data providers and formats, and data enrichment. Extensive internal and external validation shows that most statements articulate well while their aggregates display higher correlation with the regional GDP than the previous gridded GDP data products. We also examine the direction and magnitude of the reporting bias by comparing the universe of firms that are required to file with the actual filers. The RFSD can be used in various economic applications as diverse as calibration of micro-founded models, estimation of markups and productivity, or assessing industry organization and market power. 3 authors · Jan 10
- Marginal Tail-Adaptive Normalizing Flows Learning the tail behavior of a distribution is a notoriously difficult problem. By definition, the number of samples from the tail is small, and deep generative models, such as normalizing flows, tend to concentrate on learning the body of the distribution. In this paper, we focus on improving the ability of normalizing flows to correctly capture the tail behavior and, thus, form more accurate models. We prove that the marginal tailedness of an autoregressive flow can be controlled via the tailedness of the marginals of its base distribution. This theoretical insight leads us to a novel type of flows based on flexible base distributions and data-driven linear layers. An empirical analysis shows that the proposed method improves on the accuracy -- especially on the tails of the distribution -- and is able to generate heavy-tailed data. We demonstrate its application on a weather and climate example, in which capturing the tail behavior is essential. 3 authors · Jun 21, 2022
- Multilingual Autoregressive Entity Linking We present mGENRE, a sequence-to-sequence system for the Multilingual Entity Linking (MEL) problem -- the task of resolving language-specific mentions to a multilingual Knowledge Base (KB). For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token in an autoregressive fashion. The autoregressive formulation allows us to effectively cross-encode mention string and entity names to capture more interactions than the standard dot product between mention and entity vectors. It also enables fast search within a large KB even for mentions that do not appear in mention tables and with no need for large-scale vector indices. While prior MEL works use a single representation for each entity, we match against entity names of as many languages as possible, which allows exploiting language connections between source input and target name. Moreover, in a zero-shot setting on languages with no training data at all, mGENRE treats the target language as a latent variable that is marginalized at prediction time. This leads to over 50% improvements in average accuracy. We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks where mGENRE establishes new state-of-the-art results. Code and pre-trained models at https://github.com/facebookresearch/GENRE. 10 authors · Mar 23, 2021
- PyTorch-BigGraph: A Large-scale Graph Embedding System Graph embedding methods produce unsupervised node features from graphs that can then be used for a variety of machine learning tasks. Modern graphs, particularly in industrial applications, contain billions of nodes and trillions of edges, which exceeds the capability of existing embedding systems. We present PyTorch-BigGraph (PBG), an embedding system that incorporates several modifications to traditional multi-relation embedding systems that allow it to scale to graphs with billions of nodes and trillions of edges. PBG uses graph partitioning to train arbitrarily large embeddings on either a single machine or in a distributed environment. We demonstrate comparable performance with existing embedding systems on common benchmarks, while allowing for scaling to arbitrarily large graphs and parallelization on multiple machines. We train and evaluate embeddings on several large social network graphs as well as the full Freebase dataset, which contains over 100 million nodes and 2 billion edges. 7 authors · Mar 28, 2019
- Distance Preservation Games We introduce and analyze distance preservation games (DPGs). In DPGs, agents express ideal distances to other agents and need to choose locations in the unit interval while preserving their ideal distances as closely as possible. We analyze the existence and computation of location profiles that are jump stable (i.e., no agent can benefit by moving to another location) or welfare optimal for DPGs, respectively. Specifically, we prove that there are DPGs without jump stable location profiles and identify important cases where such outcomes always exist and can be computed efficiently. Similarly, we show that finding welfare optimal location profiles is NP-complete and present approximation algorithms for finding solutions with social welfare close to optimal. Finally, we prove that DPGs have a price of anarchy of at most 2. 5 authors · May 9
- SUM Parts: Benchmarking Part-Level Semantic Segmentation of Urban Meshes Semantic segmentation in urban scene analysis has mainly focused on images or point clouds, while textured meshes - offering richer spatial representation - remain underexplored. This paper introduces SUM Parts, the first large-scale dataset for urban textured meshes with part-level semantic labels, covering about 2.5 km2 with 21 classes. The dataset was created using our own annotation tool, which supports both face- and texture-based annotations with efficient interactive selection. We also provide a comprehensive evaluation of 3D semantic segmentation and interactive annotation methods on this dataset. Our project page is available at https://tudelft3d.github.io/SUMParts/. 3 authors · Mar 19
- CJST: CTC Compressor based Joint Speech and Text Training for Decoder-Only ASR CTC compressor can be an effective approach to integrate audio encoders to decoder-only models, which has gained growing interest for different speech applications. In this work, we propose a novel CTC compressor based joint speech and text training (CJST) framework for decoder-only ASR. CJST matches speech and text modalities from both directions by exploring a simple modality adaptor and several features of the CTC compressor, including sequence compression, on-the-fly forced peaky alignment and CTC class embeddings. Experimental results on the Librispeech and TED-LIUM2 corpora show that the proposed CJST achieves an effective text injection without the need of duration handling, leading to the best performance for both in-domain and cross-domain scenarios. We also provide a comprehensive study on CTC compressor, covering various compression modes, edge case handling and behavior under both clean and noisy data conditions, which reveals the most robust setting to use CTC compressor for decoder-only models. 5 authors · Nov 12, 2024
- MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions The integration of neural-network-based systems into clinical practice is limited by challenges related to domain generalization and robustness. The computer vision community established benchmarks such as ImageNet-C as a fundamental prerequisite to measure progress towards those challenges. Similar datasets are largely absent in the medical imaging community which lacks a comprehensive benchmark that spans across imaging modalities and applications. To address this gap, we create and open-source MedMNIST-C, a benchmark dataset based on the MedMNIST+ collection covering 12 datasets and 9 imaging modalities. We simulate task and modality-specific image corruptions of varying severity to comprehensively evaluate the robustness of established algorithms against real-world artifacts and distribution shifts. We further provide quantitative evidence that our simple-to-use artificial corruptions allow for highly performant, lightweight data augmentation to enhance model robustness. Unlike traditional, generic augmentation strategies, our approach leverages domain knowledge, exhibiting significantly higher robustness when compared to widely adopted methods. By introducing MedMNIST-C and open-sourcing the corresponding library allowing for targeted data augmentations, we contribute to the development of increasingly robust methods tailored to the challenges of medical imaging. The code is available at https://github.com/francescodisalvo05/medmnistc-api . 3 authors · Jun 25, 2024
- A many-sorted epistemic logic for chromatic hypergraphs We propose a many-sorted modal logic for reasoning about knowledge in multi-agent systems. Our logic introduces a clear distinction between participating agents and the environment. This allows to express local properties of agents and global properties of worlds in a uniform way, as well as to talk about the presence or absence of agents in a world. The logic subsumes the standard epistemic logic and is a conservative extension of it. The semantics is given in chromatic hypergraphs, a generalization of chromatic simplicial complexes, which were recently used to model knowledge in distributed systems. We show that the logic is sound and complete with respect to the intended semantics. We also show a further connection of chromatic hypergraphs with neighborhood frames. 3 authors · Aug 1, 2023
- EVA-CLIP: Improved Training Techniques for CLIP at Scale Contrastive language-image pre-training, CLIP for short, has gained increasing attention for its potential in various scenarios. In this paper, we propose EVA-CLIP, a series of models that significantly improve the efficiency and effectiveness of CLIP training. Our approach incorporates new techniques for representation learning, optimization, and augmentation, enabling EVA-CLIP to achieve superior performance compared to previous CLIP models with the same number of parameters but significantly smaller training costs. Notably, our largest 5.0B-parameter EVA-02-CLIP-E/14+ with only 9 billion seen samples achieves 82.0 zero-shot top-1 accuracy on ImageNet-1K val. A smaller EVA-02-CLIP-L/14+ with only 430 million parameters and 6 billion seen samples achieves 80.4 zero-shot top-1 accuracy on ImageNet-1K val. To facilitate open access and open research, we release the complete suite of EVA-CLIP to the community at https://github.com/baaivision/EVA/tree/master/EVA-CLIP. 5 authors · Mar 27, 2023
- Multi-Dimensional Gender Bias Classification Machine learning models are trained to find patterns in data. NLP models can inadvertently learn socially undesirable patterns when training on gender biased text. In this work, we propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions: bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker. Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information. In addition, we collect a novel, crowdsourced evaluation benchmark of utterance-level gender rewrites. Distinguishing between gender bias along multiple dimensions is important, as it enables us to train finer-grained gender bias classifiers. We show our classifiers prove valuable for a variety of important applications, such as controlling for gender bias in generative models, detecting gender bias in arbitrary text, and shed light on offensive language in terms of genderedness. 6 authors · May 1, 2020
- Neutron capture measurements for s-process nucleosynthesis; A review about CERN n_TOF developments and contributions This article presents a review about the main CERN n\_TOF contributions to the field of neutron-capture experiments of interest for s-process nucleosynthesis studies over the last 25 years, with special focus on the measurement of radioactive isotopes. A few recent capture experiments on stable isotopes of astrophysical interest are also discussed. Results on s-process branching nuclei are appropriate to illustrate how advances in detection systems and upgrades in the facility have enabled increasingly challenging experiments and, as a consequence, have led to a better understanding and modeling of the s-process mechanism of nucleosynthesis. New endeavors combining radioactive-ion beams from ISOLDE for the production of radioisotopically pure samples for activation experiments at the new NEAR facility at n\_TOF are briefly discussed. On the basis of these new exciting results, also current limitations of state-of-the-art TOF and activation techniques will be depicted, thereby showing the pressing need for further upgrades and enhancements on both facilities and detection systems. A brief account of the potential technique based on inverse kinematics for direct neutron-capture measurements is also presented. 146 authors · Feb 14
9 Dynamic ASR Pathways: An Adaptive Masking Approach Towards Efficient Pruning of A Multilingual ASR Model Neural network pruning offers an effective method for compressing a multilingual automatic speech recognition (ASR) model with minimal performance loss. However, it entails several rounds of pruning and re-training needed to be run for each language. In this work, we propose the use of an adaptive masking approach in two scenarios for pruning a multilingual ASR model efficiently, each resulting in sparse monolingual models or a sparse multilingual model (named as Dynamic ASR Pathways). Our approach dynamically adapts the sub-network, avoiding premature decisions about a fixed sub-network structure. We show that our approach outperforms existing pruning methods when targeting sparse monolingual models. Further, we illustrate that Dynamic ASR Pathways jointly discovers and trains better sub-networks (pathways) of a single multilingual model by adapting from different sub-network initializations, thereby reducing the need for language-specific pruning. 10 authors · Sep 22, 2023 1
3 Augmenting text for spoken language understanding with Large Language Models Spoken semantic parsing (SSP) involves generating machine-comprehensible parses from input speech. Training robust models for existing application domains represented in training data or extending to new domains requires corresponding triplets of speech-transcript-semantic parse data, which is expensive to obtain. In this paper, we address this challenge by examining methods that can use transcript-semantic parse data (unpaired text) without corresponding speech. First, when unpaired text is drawn from existing textual corpora, Joint Audio Text (JAT) and Text-to-Speech (TTS) are compared as ways to generate speech representations for unpaired text. Experiments on the STOP dataset show that unpaired text from existing and new domains improves performance by 2% and 30% in absolute Exact Match (EM) respectively. Second, we consider the setting when unpaired text is not available in existing textual corpora. We propose to prompt Large Language Models (LLMs) to generate unpaired text for existing and new domains. Experiments show that examples and words that co-occur with intents can be used to generate unpaired text with Llama 2.0. Using the generated text with JAT and TTS for spoken semantic parsing improves EM on STOP by 1.4% and 2.6% absolute for existing and new domains respectively. 10 authors · Sep 17, 2023
3 AltDiffusion: A Multilingual Text-to-Image Diffusion Model Large Text-to-Image(T2I) diffusion models have shown a remarkable capability to produce photorealistic and diverse images based on text inputs. However, existing works only support limited language input, e.g., English, Chinese, and Japanese, leaving users beyond these languages underserved and blocking the global expansion of T2I models. Therefore, this paper presents AltDiffusion, a novel multilingual T2I diffusion model that supports eighteen different languages. Specifically, we first train a multilingual text encoder based on the knowledge distillation. Then we plug it into a pretrained English-only diffusion model and train the model with a two-stage schema to enhance the multilingual capability, including concept alignment and quality improvement stage on a large-scale multilingual dataset. Furthermore, we introduce a new benchmark, which includes Multilingual-General-18(MG-18) and Multilingual-Cultural-18(MC-18) datasets, to evaluate the capabilities of T2I diffusion models for generating high-quality images and capturing culture-specific concepts in different languages. Experimental results on both MG-18 and MC-18 demonstrate that AltDiffusion outperforms current state-of-the-art T2I models, e.g., Stable Diffusion in multilingual understanding, especially with respect to culture-specific concepts, while still having comparable capability for generating high-quality images. 4 authors · Aug 19, 2023
2 AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities In this work, we present a conceptually simple and effective method to train a strong bilingual/multilingual multimodal representation model. Starting from the pre-trained multimodal representation model CLIP released by OpenAI, we altered its text encoder with a pre-trained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k-CN, COCO-CN and XTD. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding. Our models and code are available at https://github.com/FlagAI-Open/FlagAI. 6 authors · Nov 12, 2022 1
2 Dense Passage Retrieval for Open-Domain Question Answering Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks. 8 authors · Apr 10, 2020
1 EVA: Exploring the Limits of Masked Visual Representation Learning at Scale We launch EVA, a vision-centric foundation model to explore the limits of visual representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained to reconstruct the masked out image-text aligned vision features conditioned on visible image patches. Via this pretext task, we can efficiently scale up EVA to one billion parameters, and sets new records on a broad range of representative vision downstream tasks, such as image recognition, video action recognition, object detection, instance segmentation and semantic segmentation without heavy supervised training. Moreover, we observe quantitative changes in scaling EVA result in qualitative changes in transfer learning performance that are not present in other models. For instance, EVA takes a great leap in the challenging large vocabulary instance segmentation task: our model achieves almost the same state-of-the-art performance on LVISv1.0 dataset with over a thousand categories and COCO dataset with only eighty categories. Beyond a pure vision encoder, EVA can also serve as a vision-centric, multi-modal pivot to connect images and text. We find initializing the vision tower of a giant CLIP from EVA can greatly stabilize the training and outperform the training from scratch counterpart with much fewer samples and less compute, providing a new direction for scaling up and accelerating the costly training of multi-modal foundation models. To facilitate future research, we release all the code and models at https://github.com/baaivision/EVA. 9 authors · Nov 14, 2022
- Frozen Large Language Models Can Perceive Paralinguistic Aspects of Speech This work studies the capabilities of a large language model (LLM) to understand paralinguistic aspects of speech without fine-tuning its weights. We utilize an end-to-end system with a speech encoder, which is trained to produce token embeddings such that the LLM's response to an expressive speech prompt is aligned with its response to a semantically matching text prompt that has also been conditioned on the user's speaking style. This framework enables the encoder to generate tokens that capture both linguistic and paralinguistic information and effectively convey them to the LLM, even when the LLM's weights remain completely frozen. To the best of our knowledge, our work is the first to explore how to induce a frozen LLM to understand more than just linguistic content from speech inputs in a general interaction setting. Experiments demonstrate that our system is able to produce higher quality and more empathetic responses to expressive speech prompts compared to several baselines. 11 authors · Oct 1, 2024
- Frequency-domain multiplexing of SNSPDs with tunable superconducting resonators This work culminates in a demonstration of an alternative Frequency Domain Multiplexing (FDM) scheme for Superconducting Nanowire Single-Photon Detectors (SNSPDs) using the Kinetic inductance Parametric UP-converter (KPUP) made out of NbTiN. There are multiple multiplexing architectures for SNSPDs that are already in use, but FDM could prove superior in applications where the operational bias currents are very low, especially for mid- and far-infrared SNSPDs. Previous FDM schemes integrated the SNSPD within the resonator, while in this work we use an external resonator, which gives more flexibility to optimize the SNSPD architecture. The KPUP is a DC-biased superconducting resonator in which a nanowire is used as its inductive element to enable sensitivity to current perturbations. When coupled to an SNSPD, the KPUP can be used to read out current pulses on the few μA scale. The KPUP is made out of NbTiN, which has high non-linear kinetic inductance for increased sensitivity at higher current bias and high operating temperature. Meanwhile, the SNSPD is made from WSi, which is a popular material for broadband SNSPDs. To read out the KPUP and SNSPD array, a software-defined radio platform and a graphics processing unit are used. Frequency Domain Multiplexed SNSPDs have applications in astronomy, remote sensing, exoplanet science, dark matter detection, and quantum sensing. 12 authors · Jan 30, 2024
- UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model in Data Science Recent advancements in NLP have witnessed the groundbreaking impact of pretrained models, yielding impressive outcomes across various tasks. This study seeks to extend the power of pretraining methodologies to facilitating the prediction over tables in data science, a domain traditionally overlooked, yet inherently challenging due to the plethora of table schemas intrinsic to different tasks. The primary research questions underpinning this work revolve around the establishment of a universal pretraining protocol for tables with varied structures, the generalizability and transferability of learned knowledge across tasks, the adaptation to diverse downstream applications, and the incorporation of incremental columns over time. In response to these challenges, we introduce UniTabE, a straightforward yet effective method designed to process tables in a uniform manner, devoid of constraints imposed by specific table structures. UniTabE's core concept relies on representing each basic table element with a module, termed TabUnit. This is subsequently followed by a Transformer encoder to refine the representation. Moreover, our model is designed to facilitate pretraining and finetuning through the utilization of free-form prompts. In order to implement the pretraining phase, we curated an expansive tabular dataset comprising approximately 13B samples, meticulously gathered from the Kaggle platform. This research primarily centers on classification and regression tasks involving tabular data, and conducts rigorous experimental testing and analyses to validate the effectiveness of our methodology. The experimental results demonstrate UniTabE's superior performance against several baselines across massive benchmarks. This, therefore, underscores UniTabE's potential to significantly enhance the semantic representation of tabular data, thereby marking a significant stride for tabular data analysis. 5 authors · Jul 18, 2023
- Voicebox: Text-Guided Multilingual Universal Speech Generation at Scale Large-scale generative models such as GPT and DALL-E have revolutionized the research community. These models not only generate high fidelity outputs, but are also generalists which can solve tasks not explicitly taught. In contrast, speech generative models are still primitive in terms of scale and task generalization. In this paper, we present Voicebox, the most versatile text-guided generative model for speech at scale. Voicebox is a non-autoregressive flow-matching model trained to infill speech, given audio context and text, trained on over 50K hours of speech that are not filtered or enhanced. Similar to GPT, Voicebox can perform many different tasks through in-context learning, but is more flexible as it can also condition on future context. Voicebox can be used for mono or cross-lingual zero-shot text-to-speech synthesis, noise removal, content editing, style conversion, and diverse sample generation. In particular, Voicebox outperforms the state-of-the-art zero-shot TTS model VALL-E on both intelligibility (5.9% vs 1.9% word error rates) and audio similarity (0.580 vs 0.681) while being up to 20 times faster. Audio samples can be found in https://voicebox.metademolab.com. 11 authors · Jun 23, 2023 1
- SZZ in the time of Pull Requests In the multi-commit development model, programmers complete tasks (e.g., implementing a feature) by organizing their work in several commits and packaging them into a commit-set. Analyzing data from developers using this model can be useful to tackle challenging developers' needs, such as knowing which features introduce a bug as well as assessing the risk of integrating certain features in a release. However, to do so one first needs to identify fix-inducing commit-sets. For such an identification, the SZZ algorithm is the most natural candidate, but its performance has not been evaluated in the multi-commit context yet. In this study, we conduct an in-depth investigation on the reliability and performance of SZZ in the multi-commit model. To obtain a reliable ground truth, we consider an already existing SZZ dataset and adapt it to the multi-commit context. Moreover, we devise a second dataset that is more extensive and directly created by developers as well as Quality Assurance (QA) engineers of Mozilla. Based on these datasets, we (1) test the performance of B-SZZ and its non-language-specific SZZ variations in the context of the multi-commit model, (2) investigate the reasons behind their specific behavior, and (3) analyze the impact of non-relevant commits in a commit-set and automatically detect them before using SZZ. 9 authors · Sep 7, 2022
- DynamicRetriever: A Pre-training Model-based IR System with Neither Sparse nor Dense Index Web search provides a promising way for people to obtain information and has been extensively studied. With the surgence of deep learning and large-scale pre-training techniques, various neural information retrieval models are proposed and they have demonstrated the power for improving search (especially, the ranking) quality. All these existing search methods follow a common paradigm, i.e. index-retrieve-rerank, where they first build an index of all documents based on document terms (i.e., sparse inverted index) or representation vectors (i.e., dense vector index), then retrieve and rerank retrieved documents based on similarity between the query and documents via ranking models. In this paper, we explore a new paradigm of information retrieval with neither sparse nor dense index but only a model. Specifically, we propose a pre-training model-based IR system called DynamicRetriever. As for this system, the training stage embeds the token-level and document-level information (especially, document identifiers) of the corpus into the model parameters, then the inference stage directly generates document identifiers for a given query. Compared with existing search methods, the model-based IR system has two advantages: i) it parameterizes the traditional static index with a pre-training model, which converts the document semantic mapping into a dynamic and updatable process; ii) with separate document identifiers, it captures both the term-level and document-level information for each document. Extensive experiments conducted on the public search benchmark MS MARCO verify the effectiveness and potential of our proposed new paradigm for information retrieval. 5 authors · Mar 1, 2022
- Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes Long Short Term Memory LSTM-based structures have demonstrated their efficiency for daily living recognition activities in smart homes by capturing the order of sensor activations and their temporal dependencies. Nevertheless, they still fail in dealing with the semantics and the context of the sensors. More than isolated id and their ordered activation values, sensors also carry meaning. Indeed, their nature and type of activation can translate various activities. Their logs are correlated with each other, creating a global context. We propose to use and compare two Natural Language Processing embedding methods to enhance LSTM-based structures in activity-sequences classification tasks: Word2Vec, a static semantic embedding, and ELMo, a contextualized embedding. Results, on real smart homes datasets, indicate that this approach provides useful information, such as a sensor organization map, and makes less confusion between daily activity classes. It helps to better perform on datasets with competing activities of other residents or pets. Our tests show also that the embeddings can be pretrained on different datasets than the target one, enabling transfer learning. We thus demonstrate that taking into account the context of the sensors and their semantics increases the classification performances and enables transfer learning. 5 authors · Nov 23, 2021
- A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy and health of their residents, especially for the elderly and dependent. To provide such services, a smart home must be able to understand the daily activities of its residents. Techniques for recognizing human activity in smart homes are advancing daily. But new challenges are emerging every day. In this paper, we present recent algorithms, works, challenges and taxonomy of the field of human activity recognition in a smart home through ambient sensors. Moreover, since activity recognition in smart homes is a young field, we raise specific problems, missing and needed contributions. But also propose directions, research opportunities and solutions to accelerate advances in this field. 5 authors · Oct 18, 2021
- Dynaboard: An Evaluation-As-A-Service Platform for Holistic Next-Generation Benchmarking We introduce Dynaboard, an evaluation-as-a-service framework for hosting benchmarks and conducting holistic model comparison, integrated with the Dynabench platform. Our platform evaluates NLP models directly instead of relying on self-reported metrics or predictions on a single dataset. Under this paradigm, models are submitted to be evaluated in the cloud, circumventing the issues of reproducibility, accessibility, and backwards compatibility that often hinder benchmarking in NLP. This allows users to interact with uploaded models in real time to assess their quality, and permits the collection of additional metrics such as memory use, throughput, and robustness, which -- despite their importance to practitioners -- have traditionally been absent from leaderboards. On each task, models are ranked according to the Dynascore, a novel utility-based aggregation of these statistics, which users can customize to better reflect their preferences, placing more/less weight on a particular axis of evaluation or dataset. As state-of-the-art NLP models push the limits of traditional benchmarks, Dynaboard offers a standardized solution for a more diverse and comprehensive evaluation of model quality. 9 authors · May 20, 2021
- SUM: A Benchmark Dataset of Semantic Urban Meshes Recent developments in data acquisition technology allow us to collect 3D texture meshes quickly. Those can help us understand and analyse the urban environment, and as a consequence are useful for several applications like spatial analysis and urban planning. Semantic segmentation of texture meshes through deep learning methods can enhance this understanding, but it requires a lot of labelled data. The contributions of this work are threefold: (1) a new benchmark dataset of semantic urban meshes, (2) a novel semi-automatic annotation framework, and (3) an annotation tool for 3D meshes. In particular, our dataset covers about 4 km2 in Helsinki (Finland), with six classes, and we estimate that we save about 600 hours of labelling work using our annotation framework, which includes initial segmentation and interactive refinement. We also compare the performance of several state-of-theart 3D semantic segmentation methods on the new benchmark dataset. Other researchers can use our results to train their networks: the dataset is publicly available, and the annotation tool is released as open-source. 4 authors · Feb 27, 2021
- Marito: Structuring and Building Open Multilingual Terminologies for South African NLP The critical lack of structured terminological data for South Africa's official languages hampers progress in multilingual NLP, despite the existence of numerous government and academic terminology lists. These valuable assets remain fragmented and locked in non-machine-readable formats, rendering them unusable for computational research and development. Marito addresses this challenge by systematically aggregating, cleaning, and standardising these scattered resources into open, interoperable datasets. We introduce the foundational Marito dataset, released under the equitable, Africa-centered NOODL framework. To demonstrate its immediate utility, we integrate the terminology into a Retrieval-Augmented Generation (RAG) pipeline. Experiments show substantial improvements in the accuracy and domain-specific consistency of English-to-Tshivenda machine translation for large language models. Marito provides a scalable foundation for developing robust and equitable NLP technologies, ensuring South Africa's rich linguistic diversity is represented in the digital age. 12 authors · Aug 5
- The Interspeech 2025 Speech Accessibility Project Challenge While the last decade has witnessed significant advancements in Automatic Speech Recognition (ASR) systems, performance of these systems for individuals with speech disabilities remains inadequate, partly due to limited public training data. To bridge this gap, the 2025 Interspeech Speech Accessibility Project (SAP) Challenge was launched, utilizing over 400 hours of SAP data collected and transcribed from more than 500 individuals with diverse speech disabilities. Hosted on EvalAI and leveraging the remote evaluation pipeline, the SAP Challenge evaluates submissions based on Word Error Rate and Semantic Score. Consequently, 12 out of 22 valid teams outperformed the whisper-large-v2 baseline in terms of WER, while 17 teams surpassed the baseline on SemScore. Notably, the top team achieved the lowest WER of 8.11\%, and the highest SemScore of 88.44\% at the same time, setting new benchmarks for future ASR systems in recognizing impaired speech. 16 authors · Jul 29
- 34 Examples of LLM Applications in Materials Science and Chemistry: Towards Automation, Assistants, Agents, and Accelerated Scientific Discovery Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility. 35 authors · May 5
- AVIDa-hIL6: A Large-Scale VHH Dataset Produced from an Immunized Alpaca for Predicting Antigen-Antibody Interactions Antibodies have become an important class of therapeutic agents to treat human diseases. To accelerate therapeutic antibody discovery, computational methods, especially machine learning, have attracted considerable interest for predicting specific interactions between antibody candidates and target antigens such as viruses and bacteria. However, the publicly available datasets in existing works have notable limitations, such as small sizes and the lack of non-binding samples and exact amino acid sequences. To overcome these limitations, we have developed AVIDa-hIL6, a large-scale dataset for predicting antigen-antibody interactions in the variable domain of heavy chain of heavy chain antibodies (VHHs), produced from an alpaca immunized with the human interleukin-6 (IL-6) protein, as antigens. By leveraging the simple structure of VHHs, which facilitates identification of full-length amino acid sequences by DNA sequencing technology, AVIDa-hIL6 contains 573,891 antigen-VHH pairs with amino acid sequences. All the antigen-VHH pairs have reliable labels for binding or non-binding, as generated by a novel labeling method. Furthermore, via introduction of artificial mutations, AVIDa-hIL6 contains 30 different mutants in addition to wild-type IL-6 protein. This characteristic provides opportunities to develop machine learning models for predicting changes in antibody binding by antigen mutations. We report experimental benchmark results on AVIDa-hIL6 by using neural network-based baseline models. The results indicate that the existing models have potential, but further research is needed to generalize them to predict effective antibodies against unknown mutants. The dataset is available at https://avida-hil6.cognanous.com. 11 authors · Jun 5, 2023
32 Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research. 141 authors · Nov 20, 2024 2
- Ego4D: Around the World in 3,000 Hours of Egocentric Video We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite. It offers 3,670 hours of daily-life activity video spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.) captured by 931 unique camera wearers from 74 worldwide locations and 9 different countries. The approach to collection is designed to uphold rigorous privacy and ethics standards with consenting participants and robust de-identification procedures where relevant. Ego4D dramatically expands the volume of diverse egocentric video footage publicly available to the research community. Portions of the video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized videos from multiple egocentric cameras at the same event. Furthermore, we present a host of new benchmark challenges centered around understanding the first-person visual experience in the past (querying an episodic memory), present (analyzing hand-object manipulation, audio-visual conversation, and social interactions), and future (forecasting activities). By publicly sharing this massive annotated dataset and benchmark suite, we aim to push the frontier of first-person perception. Project page: https://ego4d-data.org/ 85 authors · Oct 13, 2021