new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 16

Matching-Based Few-Shot Semantic Segmentation Models Are Interpretable by Design

Few-Shot Semantic Segmentation (FSS) models achieve strong performance in segmenting novel classes with minimal labeled examples, yet their decision-making processes remain largely opaque. While explainable AI has advanced significantly in standard computer vision tasks, interpretability in FSS remains virtually unexplored despite its critical importance for understanding model behavior and guiding support set selection in data-scarce scenarios. This paper introduces the first dedicated method for interpreting matching-based FSS models by leveraging their inherent structural properties. Our Affinity Explainer approach extracts attribution maps that highlight which pixels in support images contribute most to query segmentation predictions, using matching scores computed between support and query features at multiple feature levels. We extend standard interpretability evaluation metrics to the FSS domain and propose additional metrics to better capture the practical utility of explanations in few-shot scenarios. Comprehensive experiments on FSS benchmark datasets, using different models, demonstrate that our Affinity Explainer significantly outperforms adapted standard attribution methods. Qualitative analysis reveals that our explanations provide structured, coherent attention patterns that align with model architectures and and enable effective model diagnosis. This work establishes the foundation for interpretable FSS research, enabling better model understanding and diagnostic for more reliable few-shot segmentation systems. The source code is publicly available at https://github.com/pasqualedem/AffinityExplainer.

  • 5 authors
·
Nov 22

DAMASHA: Detecting AI in Mixed Adversarial Texts via Segmentation with Human-interpretable Attribution

In the age of advanced large language models (LLMs), the boundaries between human and AI-generated text are becoming increasingly blurred. We address the challenge of segmenting mixed-authorship text, that is identifying transition points in text where authorship shifts from human to AI or vice-versa, a problem with critical implications for authenticity, trust, and human oversight. We introduce a novel framework, called Info-Mask for mixed authorship detection that integrates stylometric cues, perplexity-driven signals, and structured boundary modeling to accurately segment collaborative human-AI content. To evaluate the robustness of our system against adversarial perturbations, we construct and release an adversarial benchmark dataset Mixed-text Adversarial setting for Segmentation (MAS), designed to probe the limits of existing detectors. Beyond segmentation accuracy, we introduce Human-Interpretable Attribution (HIA overlays that highlight how stylometric features inform boundary predictions, and we conduct a small-scale human study assessing their usefulness. Across multiple architectures, Info-Mask significantly improves span-level robustness under adversarial conditions, establishing new baselines while revealing remaining challenges. Our findings highlight both the promise and limitations of adversarially robust, interpretable mixed-authorship detection, with implications for trust and oversight in human-AI co-authorship.

  • 6 authors
·
Dec 4