Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeStyleSculptor: Zero-Shot Style-Controllable 3D Asset Generation with Texture-Geometry Dual Guidance
Creating 3D assets that follow the texture and geometry style of existing ones is often desirable or even inevitable in practical applications like video gaming and virtual reality. While impressive progress has been made in generating 3D objects from text or images, creating style-controllable 3D assets remains a complex and challenging problem. In this work, we propose StyleSculptor, a novel training-free approach for generating style-guided 3D assets from a content image and one or more style images. Unlike previous works, StyleSculptor achieves style-guided 3D generation in a zero-shot manner, enabling fine-grained 3D style control that captures the texture, geometry, or both styles of user-provided style images. At the core of StyleSculptor is a novel Style Disentangled Attention (SD-Attn) module, which establishes a dynamic interaction between the input content image and style image for style-guided 3D asset generation via a cross-3D attention mechanism, enabling stable feature fusion and effective style-guided generation. To alleviate semantic content leakage, we also introduce a style-disentangled feature selection strategy within the SD-Attn module, which leverages the variance of 3D feature patches to disentangle style- and content-significant channels, allowing selective feature injection within the attention framework. With SD-Attn, the network can dynamically compute texture-, geometry-, or both-guided features to steer the 3D generation process. Built upon this, we further propose the Style Guided Control (SGC) mechanism, which enables exclusive geometry- or texture-only stylization, as well as adjustable style intensity control. Extensive experiments demonstrate that StyleSculptor outperforms existing baseline methods in producing high-fidelity 3D assets.
Advances in 4D Generation: A Survey
Generative artificial intelligence (AI) has made significant progress across various domains in recent years. Building on the rapid advancements in 2D, video, and 3D content generation fields, 4D generation has emerged as a novel and rapidly evolving research area, attracting growing attention. 4D generation focuses on creating dynamic 3D assets with spatiotemporal consistency based on user input, offering greater creative freedom and richer immersive experiences. This paper presents a comprehensive survey of the 4D generation field, systematically summarizing its core technologies, developmental trajectory, key challenges, and practical applications, while also exploring potential future research directions. The survey begins by introducing various fundamental 4D representation models, followed by a review of 4D generation frameworks built upon these representations and the key technologies that incorporate motion and geometry priors into 4D assets. We summarize five major challenges of 4D generation: consistency, controllability, diversity, efficiency, and fidelity, accompanied by an outline of existing solutions to address these issues. We systematically analyze applications of 4D generation, spanning dynamic object generation, scene generation, digital human synthesis, 4D editing, and autonomous driving. Finally, we provide an in-depth discussion of the obstacles currently hindering the development of the 4D generation. This survey offers a clear and comprehensive overview of 4D generation, aiming to stimulate further exploration and innovation in this rapidly evolving field. Our code is publicly available at: https://github.com/MiaoQiaowei/Awesome-4D.
4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency
Aided by text-to-image and text-to-video diffusion models, existing 4D content creation pipelines utilize score distillation sampling to optimize the entire dynamic 3D scene. However, as these pipelines generate 4D content from text or image inputs, they incur significant time and effort in prompt engineering through trial and error. This work introduces 4DGen, a novel, holistic framework for grounded 4D content creation that decomposes the 4D generation task into multiple stages. We identify static 3D assets and monocular video sequences as key components in constructing the 4D content. Our pipeline facilitates conditional 4D generation, enabling users to specify geometry (3D assets) and motion (monocular videos), thus offering superior control over content creation. Furthermore, we construct our 4D representation using dynamic 3D Gaussians, which permits efficient, high-resolution supervision through rendering during training, thereby facilitating high-quality 4D generation. Additionally, we employ spatial-temporal pseudo labels on anchor frames, along with seamless consistency priors implemented through 3D-aware score distillation sampling and smoothness regularizations. Compared to existing baselines, our approach yields competitive results in faithfully reconstructing input signals and realistically inferring renderings from novel viewpoints and timesteps. Most importantly, our method supports grounded generation, offering users enhanced control, a feature difficult to achieve with previous methods. Project page: https://vita-group.github.io/4DGen/
EG4D: Explicit Generation of 4D Object without Score Distillation
In recent years, the increasing demand for dynamic 3D assets in design and gaming applications has given rise to powerful generative pipelines capable of synthesizing high-quality 4D objects. Previous methods generally rely on score distillation sampling (SDS) algorithm to infer the unseen views and motion of 4D objects, thus leading to unsatisfactory results with defects like over-saturation and Janus problem. Therefore, inspired by recent progress of video diffusion models, we propose to optimize a 4D representation by explicitly generating multi-view videos from one input image. However, it is far from trivial to handle practical challenges faced by such a pipeline, including dramatic temporal inconsistency, inter-frame geometry and texture diversity, and semantic defects brought by video generation results. To address these issues, we propose DG4D, a novel multi-stage framework that generates high-quality and consistent 4D assets without score distillation. Specifically, collaborative techniques and solutions are developed, including an attention injection strategy to synthesize temporal-consistent multi-view videos, a robust and efficient dynamic reconstruction method based on Gaussian Splatting, and a refinement stage with diffusion prior for semantic restoration. The qualitative results and user preference study demonstrate that our framework outperforms the baselines in generation quality by a considerable margin. Code will be released at https://github.com/jasongzy/EG4D.
WildSmoke: Ready-to-Use Dynamic 3D Smoke Assets from a Single Video in the Wild
We propose a pipeline to extract and reconstruct dynamic 3D smoke assets from a single in-the-wild video, and further integrate interactive simulation for smoke design and editing. Recent developments in 3D vision have significantly improved reconstructing and rendering fluid dynamics, supporting realistic and temporally consistent view synthesis. However, current fluid reconstructions rely heavily on carefully controlled clean lab environments, whereas real-world videos captured in the wild are largely underexplored. We pinpoint three key challenges of reconstructing smoke in real-world videos and design targeted techniques, including smoke extraction with background removal, initialization of smoke particles and camera poses, and inferring multi-view videos. Our method not only outperforms previous reconstruction and generation methods with high-quality smoke reconstructions (+2.22 average PSNR on wild videos), but also enables diverse and realistic editing of fluid dynamics by simulating our smoke assets. We provide our models, data, and 4D smoke assets at [https://autumnyq.github.io/WildSmoke](https://autumnyq.github.io/WildSmoke).
OmniPhysGS: 3D Constitutive Gaussians for General Physics-Based Dynamics Generation
Recently, significant advancements have been made in the reconstruction and generation of 3D assets, including static cases and those with physical interactions. To recover the physical properties of 3D assets, existing methods typically assume that all materials belong to a specific predefined category (e.g., elasticity). However, such assumptions ignore the complex composition of multiple heterogeneous objects in real scenarios and tend to render less physically plausible animation given a wider range of objects. We propose OmniPhysGS for synthesizing a physics-based 3D dynamic scene composed of more general objects. A key design of OmniPhysGS is treating each 3D asset as a collection of constitutive 3D Gaussians. For each Gaussian, its physical material is represented by an ensemble of 12 physical domain-expert sub-models (rubber, metal, honey, water, etc.), which greatly enhances the flexibility of the proposed model. In the implementation, we define a scene by user-specified prompts and supervise the estimation of material weighting factors via a pretrained video diffusion model. Comprehensive experiments demonstrate that OmniPhysGS achieves more general and realistic physical dynamics across a broader spectrum of materials, including elastic, viscoelastic, plastic, and fluid substances, as well as interactions between different materials. Our method surpasses existing methods by approximately 3% to 16% in metrics of visual quality and text alignment.
Real2Render2Real: Scaling Robot Data Without Dynamics Simulation or Robot Hardware
Scaling robot learning requires vast and diverse datasets. Yet the prevailing data collection paradigm-human teleoperation-remains costly and constrained by manual effort and physical robot access. We introduce Real2Render2Real (R2R2R), a novel approach for generating robot training data without relying on object dynamics simulation or teleoperation of robot hardware. The input is a smartphone-captured scan of one or more objects and a single video of a human demonstration. R2R2R renders thousands of high visual fidelity robot-agnostic demonstrations by reconstructing detailed 3D object geometry and appearance, and tracking 6-DoF object motion. R2R2R uses 3D Gaussian Splatting (3DGS) to enable flexible asset generation and trajectory synthesis for both rigid and articulated objects, converting these representations to meshes to maintain compatibility with scalable rendering engines like IsaacLab but with collision modeling off. Robot demonstration data generated by R2R2R integrates directly with models that operate on robot proprioceptive states and image observations, such as vision-language-action models (VLA) and imitation learning policies. Physical experiments suggest that models trained on R2R2R data from a single human demonstration can match the performance of models trained on 150 human teleoperation demonstrations. Project page: https://real2render2real.com
Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models
The availability of large-scale multimodal datasets and advancements in diffusion models have significantly accelerated progress in 4D content generation. Most prior approaches rely on multiple image or video diffusion models, utilizing score distillation sampling for optimization or generating pseudo novel views for direct supervision. However, these methods are hindered by slow optimization speeds and multi-view inconsistency issues. Spatial and temporal consistency in 4D geometry has been extensively explored respectively in 3D-aware diffusion models and traditional monocular video diffusion models. Building on this foundation, we propose a strategy to migrate the temporal consistency in video diffusion models to the spatial-temporal consistency required for 4D generation. Specifically, we present a novel framework, Diffusion4D, for efficient and scalable 4D content generation. Leveraging a meticulously curated dynamic 3D dataset, we develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets. To control the dynamic strength of these assets, we introduce a 3D-to-4D motion magnitude metric as guidance. Additionally, we propose a novel motion magnitude reconstruction loss and 3D-aware classifier-free guidance to refine the learning and generation of motion dynamics. After obtaining orbital views of the 4D asset, we perform explicit 4D construction with Gaussian splatting in a coarse-to-fine manner. The synthesized multi-view consistent 4D image set enables us to swiftly generate high-fidelity and diverse 4D assets within just several minutes. Extensive experiments demonstrate that our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency across various prompt modalities.
ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models
3D asset generation is getting massive amounts of attention, inspired by the recent success of text-guided 2D content creation. Existing text-to-3D methods use pretrained text-to-image diffusion models in an optimization problem or fine-tune them on synthetic data, which often results in non-photorealistic 3D objects without backgrounds. In this paper, we present a method that leverages pretrained text-to-image models as a prior, and learn to generate multi-view images in a single denoising process from real-world data. Concretely, we propose to integrate 3D volume-rendering and cross-frame-attention layers into each block of the existing U-Net network of the text-to-image model. Moreover, we design an autoregressive generation that renders more 3D-consistent images at any viewpoint. We train our model on real-world datasets of objects and showcase its capabilities to generate instances with a variety of high-quality shapes and textures in authentic surroundings. Compared to the existing methods, the results generated by our method are consistent, and have favorable visual quality (-30% FID, -37% KID).
Meta 3D Gen
We introduce Meta 3D Gen (3DGen), a new state-of-the-art, fast pipeline for text-to-3D asset generation. 3DGen offers 3D asset creation with high prompt fidelity and high-quality 3D shapes and textures in under a minute. It supports physically-based rendering (PBR), necessary for 3D asset relighting in real-world applications. Additionally, 3DGen supports generative retexturing of previously generated (or artist-created) 3D shapes using additional textual inputs provided by the user. 3DGen integrates key technical components, Meta 3D AssetGen and Meta 3D TextureGen, that we developed for text-to-3D and text-to-texture generation, respectively. By combining their strengths, 3DGen represents 3D objects simultaneously in three ways: in view space, in volumetric space, and in UV (or texture) space. The integration of these two techniques achieves a win rate of 68% with respect to the single-stage model. We compare 3DGen to numerous industry baselines, and show that it outperforms them in terms of prompt fidelity and visual quality for complex textual prompts, while being significantly faster.
Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer
Generating high-quality 3D assets from text and images has long been challenging, primarily due to the absence of scalable 3D representations capable of capturing intricate geometry distributions. In this work, we introduce Direct3D, a native 3D generative model scalable to in-the-wild input images, without requiring a multiview diffusion model or SDS optimization. Our approach comprises two primary components: a Direct 3D Variational Auto-Encoder (D3D-VAE) and a Direct 3D Diffusion Transformer (D3D-DiT). D3D-VAE efficiently encodes high-resolution 3D shapes into a compact and continuous latent triplane space. Notably, our method directly supervises the decoded geometry using a semi-continuous surface sampling strategy, diverging from previous methods relying on rendered images as supervision signals. D3D-DiT models the distribution of encoded 3D latents and is specifically designed to fuse positional information from the three feature maps of the triplane latent, enabling a native 3D generative model scalable to large-scale 3D datasets. Additionally, we introduce an innovative image-to-3D generation pipeline incorporating semantic and pixel-level image conditions, allowing the model to produce 3D shapes consistent with the provided conditional image input. Extensive experiments demonstrate the superiority of our large-scale pre-trained Direct3D over previous image-to-3D approaches, achieving significantly better generation quality and generalization ability, thus establishing a new state-of-the-art for 3D content creation. Project page: https://nju-3dv.github.io/projects/Direct3D/.
PaintScene4D: Consistent 4D Scene Generation from Text Prompts
Recent advances in diffusion models have revolutionized 2D and 3D content creation, yet generating photorealistic dynamic 4D scenes remains a significant challenge. Existing dynamic 4D generation methods typically rely on distilling knowledge from pre-trained 3D generative models, often fine-tuned on synthetic object datasets. Consequently, the resulting scenes tend to be object-centric and lack photorealism. While text-to-video models can generate more realistic scenes with motion, they often struggle with spatial understanding and provide limited control over camera viewpoints during rendering. To address these limitations, we present PaintScene4D, a novel text-to-4D scene generation framework that departs from conventional multi-view generative models in favor of a streamlined architecture that harnesses video generative models trained on diverse real-world datasets. Our method first generates a reference video using a video generation model, and then employs a strategic camera array selection for rendering. We apply a progressive warping and inpainting technique to ensure both spatial and temporal consistency across multiple viewpoints. Finally, we optimize multi-view images using a dynamic renderer, enabling flexible camera control based on user preferences. Adopting a training-free architecture, our PaintScene4D efficiently produces realistic 4D scenes that can be viewed from arbitrary trajectories. The code will be made publicly available. Our project page is at https://paintscene4d.github.io/
SceneGen: Single-Image 3D Scene Generation in One Feedforward Pass
3D content generation has recently attracted significant research interest due to its applications in VR/AR and embodied AI. In this work, we address the challenging task of synthesizing multiple 3D assets within a single scene image. Concretely, our contributions are fourfold: (i) we present SceneGen, a novel framework that takes a scene image and corresponding object masks as input, simultaneously producing multiple 3D assets with geometry and texture. Notably, SceneGen operates with no need for optimization or asset retrieval; (ii) we introduce a novel feature aggregation module that integrates local and global scene information from visual and geometric encoders within the feature extraction module. Coupled with a position head, this enables the generation of 3D assets and their relative spatial positions in a single feedforward pass; (iii) we demonstrate SceneGen's direct extensibility to multi-image input scenarios. Despite being trained solely on single-image inputs, our architectural design enables improved generation performance with multi-image inputs; and (iv) extensive quantitative and qualitative evaluations confirm the efficiency and robust generation abilities of our approach. We believe this paradigm offers a novel solution for high-quality 3D content generation, potentially advancing its practical applications in downstream tasks. The code and model will be publicly available at: https://mengmouxu.github.io/SceneGen.
4Real: Towards Photorealistic 4D Scene Generation via Video Diffusion Models
Existing dynamic scene generation methods mostly rely on distilling knowledge from pre-trained 3D generative models, which are typically fine-tuned on synthetic object datasets. As a result, the generated scenes are often object-centric and lack photorealism. To address these limitations, we introduce a novel pipeline designed for photorealistic text-to-4D scene generation, discarding the dependency on multi-view generative models and instead fully utilizing video generative models trained on diverse real-world datasets. Our method begins by generating a reference video using the video generation model. We then learn the canonical 3D representation of the video using a freeze-time video, delicately generated from the reference video. To handle inconsistencies in the freeze-time video, we jointly learn a per-frame deformation to model these imperfections. We then learn the temporal deformation based on the canonical representation to capture dynamic interactions in the reference video. The pipeline facilitates the generation of dynamic scenes with enhanced photorealism and structural integrity, viewable from multiple perspectives, thereby setting a new standard in 4D scene generation.
Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials
We present Meta 3D AssetGen (AssetGen), a significant advancement in text-to-3D generation which produces faithful, high-quality meshes with texture and material control. Compared to works that bake shading in the 3D object's appearance, AssetGen outputs physically-based rendering (PBR) materials, supporting realistic relighting. AssetGen generates first several views of the object with factored shaded and albedo appearance channels, and then reconstructs colours, metalness and roughness in 3D, using a deferred shading loss for efficient supervision. It also uses a sign-distance function to represent 3D shape more reliably and introduces a corresponding loss for direct shape supervision. This is implemented using fused kernels for high memory efficiency. After mesh extraction, a texture refinement transformer operating in UV space significantly improves sharpness and details. AssetGen achieves 17% improvement in Chamfer Distance and 40% in LPIPS over the best concurrent work for few-view reconstruction, and a human preference of 72% over the best industry competitors of comparable speed, including those that support PBR. Project page with generated assets: https://assetgen.github.io
AutoDecoding Latent 3D Diffusion Models
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core. The 3D autodecoder framework embeds properties learned from the target dataset in the latent space, which can then be decoded into a volumetric representation for rendering view-consistent appearance and geometry. We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations to learn a 3D diffusion from 2D images or monocular videos of rigid or articulated objects. Our approach is flexible enough to use either existing camera supervision or no camera information at all -- instead efficiently learning it during training. Our evaluations demonstrate that our generation results outperform state-of-the-art alternatives on various benchmark datasets and metrics, including multi-view image datasets of synthetic objects, real in-the-wild videos of moving people, and a large-scale, real video dataset of static objects.
Advancing high-fidelity 3D and Texture Generation with 2.5D latents
Despite the availability of large-scale 3D datasets and advancements in 3D generative models, the complexity and uneven quality of 3D geometry and texture data continue to hinder the performance of 3D generation techniques. In most existing approaches, 3D geometry and texture are generated in separate stages using different models and non-unified representations, frequently leading to unsatisfactory coherence between geometry and texture. To address these challenges, we propose a novel framework for joint generation of 3D geometry and texture. Specifically, we focus in generate a versatile 2.5D representations that can be seamlessly transformed between 2D and 3D. Our approach begins by integrating multiview RGB, normal, and coordinate images into a unified representation, termed as 2.5D latents. Next, we adapt pre-trained 2D foundation models for high-fidelity 2.5D generation, utilizing both text and image conditions. Finally, we introduce a lightweight 2.5D-to-3D refiner-decoder framework that efficiently generates detailed 3D representations from 2.5D images. Extensive experiments demonstrate that our model not only excels in generating high-quality 3D objects with coherent structure and color from text and image inputs but also significantly outperforms existing methods in geometry-conditioned texture generation.
CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets
In the realm of digital creativity, our potential to craft intricate 3D worlds from imagination is often hampered by the limitations of existing digital tools, which demand extensive expertise and efforts. To narrow this disparity, we introduce CLAY, a 3D geometry and material generator designed to effortlessly transform human imagination into intricate 3D digital structures. CLAY supports classic text or image inputs as well as 3D-aware controls from diverse primitives (multi-view images, voxels, bounding boxes, point clouds, implicit representations, etc). At its core is a large-scale generative model composed of a multi-resolution Variational Autoencoder (VAE) and a minimalistic latent Diffusion Transformer (DiT), to extract rich 3D priors directly from a diverse range of 3D geometries. Specifically, it adopts neural fields to represent continuous and complete surfaces and uses a geometry generative module with pure transformer blocks in latent space. We present a progressive training scheme to train CLAY on an ultra large 3D model dataset obtained through a carefully designed processing pipeline, resulting in a 3D native geometry generator with 1.5 billion parameters. For appearance generation, CLAY sets out to produce physically-based rendering (PBR) textures by employing a multi-view material diffusion model that can generate 2K resolution textures with diffuse, roughness, and metallic modalities. We demonstrate using CLAY for a range of controllable 3D asset creations, from sketchy conceptual designs to production ready assets with intricate details. Even first time users can easily use CLAY to bring their vivid 3D imaginations to life, unleashing unlimited creativity.
LATTICE: Democratize High-Fidelity 3D Generation at Scale
We present LATTICE, a new framework for high-fidelity 3D asset generation that bridges the quality and scalability gap between 3D and 2D generative models. While 2D image synthesis benefits from fixed spatial grids and well-established transformer architectures, 3D generation remains fundamentally more challenging due to the need to predict both spatial structure and detailed geometric surfaces from scratch. These challenges are exacerbated by the computational complexity of existing 3D representations and the lack of structured and scalable 3D asset encoding schemes. To address this, we propose VoxSet, a semi-structured representation that compresses 3D assets into a compact set of latent vectors anchored to a coarse voxel grid, enabling efficient and position-aware generation. VoxSet retains the simplicity and compression advantages of prior VecSet methods while introducing explicit structure into the latent space, allowing positional embeddings to guide generation and enabling strong token-level test-time scaling. Built upon this representation, LATTICE adopts a two-stage pipeline: first generating a sparse voxelized geometry anchor, then producing detailed geometry using a rectified flow transformer. Our method is simple at its core, but supports arbitrary resolution decoding, low-cost training, and flexible inference schemes, achieving state-of-the-art performance on various aspects, and offering a significant step toward scalable, high-quality 3D asset creation.
BANG: Dividing 3D Assets via Generative Exploded Dynamics
3D creation has always been a unique human strength, driven by our ability to deconstruct and reassemble objects using our eyes, mind and hand. However, current 3D design tools struggle to replicate this natural process, requiring considerable artistic expertise and manual labor. This paper introduces BANG, a novel generative approach that bridges 3D generation and reasoning, allowing for intuitive and flexible part-level decomposition of 3D objects. At the heart of BANG is "Generative Exploded Dynamics", which creates a smooth sequence of exploded states for an input geometry, progressively separating parts while preserving their geometric and semantic coherence. BANG utilizes a pre-trained large-scale latent diffusion model, fine-tuned for exploded dynamics with a lightweight exploded view adapter, allowing precise control over the decomposition process. It also incorporates a temporal attention module to ensure smooth transitions and consistency across time. BANG enhances control with spatial prompts, such as bounding boxes and surface regions, enabling users to specify which parts to decompose and how. This interaction can be extended with multimodal models like GPT-4, enabling 2D-to-3D manipulations for more intuitive and creative workflows. The capabilities of BANG extend to generating detailed part-level geometry, associating parts with functional descriptions, and facilitating component-aware 3D creation and manufacturing workflows. Additionally, BANG offers applications in 3D printing, where separable parts are generated for easy printing and reassembly. In essence, BANG enables seamless transformation from imaginative concepts to detailed 3D assets, offering a new perspective on creation that resonates with human intuition.
Text-To-4D Dynamic Scene Generation
We present MAV3D (Make-A-Video3D), a method for generating three-dimensional dynamic scenes from text descriptions. Our approach uses a 4D dynamic Neural Radiance Field (NeRF), which is optimized for scene appearance, density, and motion consistency by querying a Text-to-Video (T2V) diffusion-based model. The dynamic video output generated from the provided text can be viewed from any camera location and angle, and can be composited into any 3D environment. MAV3D does not require any 3D or 4D data and the T2V model is trained only on Text-Image pairs and unlabeled videos. We demonstrate the effectiveness of our approach using comprehensive quantitative and qualitative experiments and show an improvement over previously established internal baselines. To the best of our knowledge, our method is the first to generate 3D dynamic scenes given a text description.
Advances in 3D Generation: A Survey
Generating 3D models lies at the core of computer graphics and has been the focus of decades of research. With the emergence of advanced neural representations and generative models, the field of 3D content generation is developing rapidly, enabling the creation of increasingly high-quality and diverse 3D models. The rapid growth of this field makes it difficult to stay abreast of all recent developments. In this survey, we aim to introduce the fundamental methodologies of 3D generation methods and establish a structured roadmap, encompassing 3D representation, generation methods, datasets, and corresponding applications. Specifically, we introduce the 3D representations that serve as the backbone for 3D generation. Furthermore, we provide a comprehensive overview of the rapidly growing literature on generation methods, categorized by the type of algorithmic paradigms, including feedforward generation, optimization-based generation, procedural generation, and generative novel view synthesis. Lastly, we discuss available datasets, applications, and open challenges. We hope this survey will help readers explore this exciting topic and foster further advancements in the field of 3D content generation.
Coin3D: Controllable and Interactive 3D Assets Generation with Proxy-Guided Conditioning
As humans, we aspire to create media content that is both freely willed and readily controlled. Thanks to the prominent development of generative techniques, we now can easily utilize 2D diffusion methods to synthesize images controlled by raw sketch or designated human poses, and even progressively edit/regenerate local regions with masked inpainting. However, similar workflows in 3D modeling tasks are still unavailable due to the lack of controllability and efficiency in 3D generation. In this paper, we present a novel controllable and interactive 3D assets modeling framework, named Coin3D. Coin3D allows users to control the 3D generation using a coarse geometry proxy assembled from basic shapes, and introduces an interactive generation workflow to support seamless local part editing while delivering responsive 3D object previewing within a few seconds. To this end, we develop several techniques, including the 3D adapter that applies volumetric coarse shape control to the diffusion model, proxy-bounded editing strategy for precise part editing, progressive volume cache to support responsive preview, and volume-SDS to ensure consistent mesh reconstruction. Extensive experiments of interactive generation and editing on diverse shape proxies demonstrate that our method achieves superior controllability and flexibility in the 3D assets generation task.
DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets (represented by Neural Radiance Fields) from text prompts. Unlike recent 3D generative models that rely on clean and well-aligned 3D data, limiting them to single or few-class generation, our model is directly trained on extensive noisy and unaligned `in-the-wild' 3D assets, mitigating the key challenge (i.e., data scarcity) in large-scale 3D generation. In particular, DIRECT-3D is a tri-plane diffusion model that integrates two innovations: 1) A novel learning framework where noisy data are filtered and aligned automatically during the training process. Specifically, after an initial warm-up phase using a small set of clean data, an iterative optimization is introduced in the diffusion process to explicitly estimate the 3D pose of objects and select beneficial data based on conditional density. 2) An efficient 3D representation that is achieved by disentangling object geometry and color features with two separate conditional diffusion models that are optimized hierarchically. Given a prompt input, our model generates high-quality, high-resolution, realistic, and complex 3D objects with accurate geometric details in seconds. We achieve state-of-the-art performance in both single-class generation and text-to-3D generation. We also demonstrate that DIRECT-3D can serve as a useful 3D geometric prior of objects, for example to alleviate the well-known Janus problem in 2D-lifting methods such as DreamFusion. The code and models are available for research purposes at: https://github.com/qihao067/direct3d.
I2V3D: Controllable image-to-video generation with 3D guidance
We present I2V3D, a novel framework for animating static images into dynamic videos with precise 3D control, leveraging the strengths of both 3D geometry guidance and advanced generative models. Our approach combines the precision of a computer graphics pipeline, enabling accurate control over elements such as camera movement, object rotation, and character animation, with the visual fidelity of generative AI to produce high-quality videos from coarsely rendered inputs. To support animations with any initial start point and extended sequences, we adopt a two-stage generation process guided by 3D geometry: 1) 3D-Guided Keyframe Generation, where a customized image diffusion model refines rendered keyframes to ensure consistency and quality, and 2) 3D-Guided Video Interpolation, a training-free approach that generates smooth, high-quality video frames between keyframes using bidirectional guidance. Experimental results highlight the effectiveness of our framework in producing controllable, high-quality animations from single input images by harmonizing 3D geometry with generative models. The code for our framework will be publicly released.
Vid3D: Synthesis of Dynamic 3D Scenes using 2D Video Diffusion
A recent frontier in computer vision has been the task of 3D video generation, which consists of generating a time-varying 3D representation of a scene. To generate dynamic 3D scenes, current methods explicitly model 3D temporal dynamics by jointly optimizing for consistency across both time and views of the scene. In this paper, we instead investigate whether it is necessary to explicitly enforce multiview consistency over time, as current approaches do, or if it is sufficient for a model to generate 3D representations of each timestep independently. We hence propose a model, Vid3D, that leverages 2D video diffusion to generate 3D videos by first generating a 2D "seed" of the video's temporal dynamics and then independently generating a 3D representation for each timestep in the seed video. We evaluate Vid3D against two state-of-the-art 3D video generation methods and find that Vid3D is achieves comparable results despite not explicitly modeling 3D temporal dynamics. We further ablate how the quality of Vid3D depends on the number of views generated per frame. While we observe some degradation with fewer views, performance degradation remains minor. Our results thus suggest that 3D temporal knowledge may not be necessary to generate high-quality dynamic 3D scenes, potentially enabling simpler generative algorithms for this task.
Structured 3D Latents for Scalable and Versatile 3D Generation
We introduce a novel 3D generation method for versatile and high-quality 3D asset creation. The cornerstone is a unified Structured LATent (SLAT) representation which allows decoding to different output formats, such as Radiance Fields, 3D Gaussians, and meshes. This is achieved by integrating a sparsely-populated 3D grid with dense multiview visual features extracted from a powerful vision foundation model, comprehensively capturing both structural (geometry) and textural (appearance) information while maintaining flexibility during decoding. We employ rectified flow transformers tailored for SLAT as our 3D generation models and train models with up to 2 billion parameters on a large 3D asset dataset of 500K diverse objects. Our model generates high-quality results with text or image conditions, significantly surpassing existing methods, including recent ones at similar scales. We showcase flexible output format selection and local 3D editing capabilities which were not offered by previous models. Code, model, and data will be released.
Scene-Conditional 3D Object Stylization and Composition
Recently, 3D generative models have made impressive progress, enabling the generation of almost arbitrary 3D assets from text or image inputs. However, these approaches generate objects in isolation without any consideration for the scene where they will eventually be placed. In this paper, we propose a framework that allows for the stylization of an existing 3D asset to fit into a given 2D scene, and additionally produce a photorealistic composition as if the asset was placed within the environment. This not only opens up a new level of control for object stylization, for example, the same assets can be stylized to reflect changes in the environment, such as summer to winter or fantasy versus futuristic settings-but also makes the object-scene composition more controllable. We achieve this by combining modeling and optimizing the object's texture and environmental lighting through differentiable ray tracing with image priors from pre-trained text-to-image diffusion models. We demonstrate that our method is applicable to a wide variety of indoor and outdoor scenes and arbitrary objects.
SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation
In this work, we present a novel framework built to simplify 3D asset generation for amateur users. To enable interactive generation, our method supports a variety of input modalities that can be easily provided by a human, including images, text, partially observed shapes and combinations of these, further allowing to adjust the strength of each input. At the core of our approach is an encoder-decoder, compressing 3D shapes into a compact latent representation, upon which a diffusion model is learned. To enable a variety of multi-modal inputs, we employ task-specific encoders with dropout followed by a cross-attention mechanism. Due to its flexibility, our model naturally supports a variety of tasks, outperforming prior works on shape completion, image-based 3D reconstruction, and text-to-3D. Most interestingly, our model can combine all these tasks into one swiss-army-knife tool, enabling the user to perform shape generation using incomplete shapes, images, and textual descriptions at the same time, providing the relative weights for each input and facilitating interactivity. Despite our approach being shape-only, we further show an efficient method to texture the generated shape using large-scale text-to-image models.
ThemeStation: Generating Theme-Aware 3D Assets from Few Exemplars
Real-world applications often require a large gallery of 3D assets that share a consistent theme. While remarkable advances have been made in general 3D content creation from text or image, synthesizing customized 3D assets following the shared theme of input 3D exemplars remains an open and challenging problem. In this work, we present ThemeStation, a novel approach for theme-aware 3D-to-3D generation. ThemeStation synthesizes customized 3D assets based on given few exemplars with two goals: 1) unity for generating 3D assets that thematically align with the given exemplars and 2) diversity for generating 3D assets with a high degree of variations. To this end, we design a two-stage framework that draws a concept image first, followed by a reference-informed 3D modeling stage. We propose a novel dual score distillation (DSD) loss to jointly leverage priors from both the input exemplars and the synthesized concept image. Extensive experiments and user studies confirm that ThemeStation surpasses prior works in producing diverse theme-aware 3D models with impressive quality. ThemeStation also enables various applications such as controllable 3D-to-3D generation.
PhysX: Physical-Grounded 3D Asset Generation
3D modeling is moving from virtual to physical. Existing 3D generation primarily emphasizes geometries and textures while neglecting physical-grounded modeling. Consequently, despite the rapid development of 3D generative models, the synthesized 3D assets often overlook rich and important physical properties, hampering their real-world application in physical domains like simulation and embodied AI. As an initial attempt to address this challenge, we propose PhysX, an end-to-end paradigm for physical-grounded 3D asset generation. 1) To bridge the critical gap in physics-annotated 3D datasets, we present PhysXNet - the first physics-grounded 3D dataset systematically annotated across five foundational dimensions: absolute scale, material, affordance, kinematics, and function description. In particular, we devise a scalable human-in-the-loop annotation pipeline based on vision-language models, which enables efficient creation of physics-first assets from raw 3D assets.2) Furthermore, we propose PhysXGen, a feed-forward framework for physics-grounded image-to-3D asset generation, injecting physical knowledge into the pre-trained 3D structural space. Specifically, PhysXGen employs a dual-branch architecture to explicitly model the latent correlations between 3D structures and physical properties, thereby producing 3D assets with plausible physical predictions while preserving the native geometry quality. Extensive experiments validate the superior performance and promising generalization capability of our framework. All the code, data, and models will be released to facilitate future research in generative physical AI.
Garment3DGen: 3D Garment Stylization and Texture Generation
We introduce Garment3DGen a new method to synthesize 3D garment assets from a base mesh given a single input image as guidance. Our proposed approach allows users to generate 3D textured clothes based on both real and synthetic images, such as those generated by text prompts. The generated assets can be directly draped and simulated on human bodies. First, we leverage the recent progress of image to 3D diffusion methods to generate 3D garment geometries. However, since these geometries cannot be utilized directly for downstream tasks, we propose to use them as pseudo ground-truth and set up a mesh deformation optimization procedure that deforms a base template mesh to match the generated 3D target. Second, we introduce carefully designed losses that allow the input base mesh to freely deform towards the desired target, yet preserve mesh quality and topology such that they can be simulated. Finally, a texture estimation module generates high-fidelity texture maps that are globally and locally consistent and faithfully capture the input guidance, allowing us to render the generated 3D assets. With Garment3DGen users can generate the textured 3D garment of their choice without the need of artist intervention. One can provide a textual prompt describing the garment they desire to generate a simulation-ready 3D asset. We present a plethora of quantitative and qualitative comparisons on various assets both real and generated and provide use-cases of how one can generate simulation-ready 3D garments.
V2M4: 4D Mesh Animation Reconstruction from a Single Monocular Video
We present V2M4, a novel 4D reconstruction method that directly generates a usable 4D mesh animation asset from a single monocular video. Unlike existing approaches that rely on priors from multi-view image and video generation models, our method is based on native 3D mesh generation models. Naively applying 3D mesh generation models to generate a mesh for each frame in a 4D task can lead to issues such as incorrect mesh poses, misalignment of mesh appearance, and inconsistencies in mesh geometry and texture maps. To address these problems, we propose a structured workflow that includes camera search and mesh reposing, condition embedding optimization for mesh appearance refinement, pairwise mesh registration for topology consistency, and global texture map optimization for texture consistency. Our method outputs high-quality 4D animated assets that are compatible with mainstream graphics and game software. Experimental results across a variety of animation types and motion amplitudes demonstrate the generalization and effectiveness of our method. Project page: https://windvchen.github.io/V2M4/.
Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models
Text-guided diffusion models have revolutionized image and video generation and have also been successfully used for optimization-based 3D object synthesis. Here, we instead focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects using score distillation methods with an additional temporal dimension. Compared to previous work, we pursue a novel compositional generation-based approach, and combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization, thereby simultaneously enforcing temporal consistency, high-quality visual appearance and realistic geometry. Our method, called Align Your Gaussians (AYG), leverages dynamic 3D Gaussian Splatting with deformation fields as 4D representation. Crucial to AYG is a novel method to regularize the distribution of the moving 3D Gaussians and thereby stabilize the optimization and induce motion. We also propose a motion amplification mechanism as well as a new autoregressive synthesis scheme to generate and combine multiple 4D sequences for longer generation. These techniques allow us to synthesize vivid dynamic scenes, outperform previous work qualitatively and quantitatively and achieve state-of-the-art text-to-4D performance. Due to the Gaussian 4D representation, different 4D animations can be seamlessly combined, as we demonstrate. AYG opens up promising avenues for animation, simulation and digital content creation as well as synthetic data generation.
LDM: Large Tensorial SDF Model for Textured Mesh Generation
Previous efforts have managed to generate production-ready 3D assets from text or images. However, these methods primarily employ NeRF or 3D Gaussian representations, which are not adept at producing smooth, high-quality geometries required by modern rendering pipelines. In this paper, we propose LDM, a novel feed-forward framework capable of generating high-fidelity, illumination-decoupled textured mesh from a single image or text prompts. We firstly utilize a multi-view diffusion model to generate sparse multi-view inputs from single images or text prompts, and then a transformer-based model is trained to predict a tensorial SDF field from these sparse multi-view image inputs. Finally, we employ a gradient-based mesh optimization layer to refine this model, enabling it to produce an SDF field from which high-quality textured meshes can be extracted. Extensive experiments demonstrate that our method can generate diverse, high-quality 3D mesh assets with corresponding decomposed RGB textures within seconds.
Hunyuan3D-Omni: A Unified Framework for Controllable Generation of 3D Assets
Recent advances in 3D-native generative models have accelerated asset creation for games, film, and design. However, most methods still rely primarily on image or text conditioning and lack fine-grained, cross-modal controls, which limits controllability and practical adoption. To address this gap, we present Hunyuan3D-Omni, a unified framework for fine-grained, controllable 3D asset generation built on Hunyuan3D 2.1. In addition to images, Hunyuan3D-Omni accepts point clouds, voxels, bounding boxes, and skeletal pose priors as conditioning signals, enabling precise control over geometry, topology, and pose. Instead of separate heads for each modality, our model unifies all signals in a single cross-modal architecture. We train with a progressive, difficulty-aware sampling strategy that selects one control modality per example and biases sampling toward harder signals (e.g., skeletal pose) while downweighting easier ones (e.g., point clouds), encouraging robust multi-modal fusion and graceful handling of missing inputs. Experiments show that these additional controls improve generation accuracy, enable geometry-aware transformations, and increase robustness for production workflows.
Photo3D: Advancing Photorealistic 3D Generation through Structure-Aligned Detail Enhancement
Although recent 3D-native generators have made great progress in synthesizing reliable geometry, they still fall short in achieving realistic appearances. A key obstacle lies in the lack of diverse and high-quality real-world 3D assets with rich texture details, since capturing such data is intrinsically difficult due to the diverse scales of scenes, non-rigid motions of objects, and the limited precision of 3D scanners. We introduce Photo3D, a framework for advancing photorealistic 3D generation, which is driven by the image data generated by the GPT-4o-Image model. Considering that the generated images can distort 3D structures due to their lack of multi-view consistency, we design a structure-aligned multi-view synthesis pipeline and construct a detail-enhanced multi-view dataset paired with 3D geometry. Building on it, we present a realistic detail enhancement scheme that leverages perceptual feature adaptation and semantic structure matching to enforce appearance consistency with realistic details while preserving the structural consistency with the 3D-native geometry. Our scheme is general to different 3D-native generators, and we present dedicated training strategies to facilitate the optimization of geometry-texture coupled and decoupled 3D-native generation paradigms. Experiments demonstrate that Photo3D generalizes well across diverse 3D-native generation paradigms and achieves state-of-the-art photorealistic 3D generation performance.
ComboVerse: Compositional 3D Assets Creation Using Spatially-Aware Diffusion Guidance
Generating high-quality 3D assets from a given image is highly desirable in various applications such as AR/VR. Recent advances in single-image 3D generation explore feed-forward models that learn to infer the 3D model of an object without optimization. Though promising results have been achieved in single object generation, these methods often struggle to model complex 3D assets that inherently contain multiple objects. In this work, we present ComboVerse, a 3D generation framework that produces high-quality 3D assets with complex compositions by learning to combine multiple models. 1) We first perform an in-depth analysis of this ``multi-object gap'' from both model and data perspectives. 2) Next, with reconstructed 3D models of different objects, we seek to adjust their sizes, rotation angles, and locations to create a 3D asset that matches the given image. 3) To automate this process, we apply spatially-aware score distillation sampling (SSDS) from pretrained diffusion models to guide the positioning of objects. Our proposed framework emphasizes spatial alignment of objects, compared with standard score distillation sampling, and thus achieves more accurate results. Extensive experiments validate ComboVerse achieves clear improvements over existing methods in generating compositional 3D assets.
Generative Rendering: Controllable 4D-Guided Video Generation with 2D Diffusion Models
Traditional 3D content creation tools empower users to bring their imagination to life by giving them direct control over a scene's geometry, appearance, motion, and camera path. Creating computer-generated videos, however, is a tedious manual process, which can be automated by emerging text-to-video diffusion models. Despite great promise, video diffusion models are difficult to control, hindering a user to apply their own creativity rather than amplifying it. To address this challenge, we present a novel approach that combines the controllability of dynamic 3D meshes with the expressivity and editability of emerging diffusion models. For this purpose, our approach takes an animated, low-fidelity rendered mesh as input and injects the ground truth correspondence information obtained from the dynamic mesh into various stages of a pre-trained text-to-image generation model to output high-quality and temporally consistent frames. We demonstrate our approach on various examples where motion can be obtained by animating rigged assets or changing the camera path.
Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation
This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts, including single images, multi-view images, and text descriptions. The framework consists of 3D shape generation and texture generation. (1). The 3D shape generation pipeline employs a Variational Autoencoder (VAE) to encode implicit 3D geometries into a latent space and a diffusion network to generate latents conditioned on input prompts, with modifications to enhance model capacity. An alternative Artist-Created Mesh (AM) generation approach is also explored, yielding promising results for simpler geometries. (2). Texture generation involves a multi-stage process starting with frontal images generation followed by multi-view images generation, RGB-to-PBR texture conversion, and high-resolution multi-view texture refinement. A consistency scheduler is plugged into every stage, to enforce pixel-wise consistency among multi-view textures during inference, ensuring seamless integration. The pipeline demonstrates effective handling of diverse input formats, leveraging advanced neural architectures and novel methodologies to produce high-quality 3D content. This report details the system architecture, experimental results, and potential future directions to improve and expand the framework. The source code and pretrained weights are released at: https://github.com/Tencent/Tencent-XR-3DGen.
Fourier123: One Image to High-Quality 3D Object Generation with Hybrid Fourier Score Distillation
Single image-to-3D generation is pivotal for crafting controllable 3D assets. Given its underconstrained nature, we leverage geometric priors from a 3D novel view generation diffusion model and appearance priors from a 2D image generation method to guide the optimization process. We note that a disparity exists between the training datasets of 2D and 3D diffusion models, leading to their outputs showing marked differences in appearance. Specifically, 2D models tend to deliver more detailed visuals, whereas 3D models produce consistent yet over-smooth results across different views. Hence, we optimize a set of 3D Gaussians using 3D priors in spatial domain to ensure geometric consistency, while exploiting 2D priors in the frequency domain through Fourier transform for higher visual quality. This 2D-3D hybrid Fourier Score Distillation objective function (dubbed hy-FSD), can be integrated into existing 3D generation methods, yielding significant performance improvements. With this technique, we further develop an image-to-3D generation pipeline to create high-quality 3D objects within one minute, named Fourier123. Extensive experiments demonstrate that Fourier123 excels in efficient generation with rapid convergence speed and visual-friendly generation results.
DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation
Recent advancements in 2D/3D generative techniques have facilitated the generation of dynamic 3D objects from monocular videos. Previous methods mainly rely on the implicit neural radiance fields (NeRF) or explicit Gaussian Splatting as the underlying representation, and struggle to achieve satisfactory spatial-temporal consistency and surface appearance. Drawing inspiration from modern 3D animation pipelines, we introduce DreamMesh4D, a novel framework combining mesh representation with geometric skinning technique to generate high-quality 4D object from a monocular video. Instead of utilizing classical texture map for appearance, we bind Gaussian splats to triangle face of mesh for differentiable optimization of both the texture and mesh vertices. In particular, DreamMesh4D begins with a coarse mesh obtained through an image-to-3D generation procedure. Sparse points are then uniformly sampled across the mesh surface, and are used to build a deformation graph to drive the motion of the 3D object for the sake of computational efficiency and providing additional constraint. For each step, transformations of sparse control points are predicted using a deformation network, and the mesh vertices as well as the surface Gaussians are deformed via a novel geometric skinning algorithm, which is a hybrid approach combining LBS (linear blending skinning) and DQS (dual-quaternion skinning), mitigating drawbacks associated with both approaches. The static surface Gaussians and mesh vertices as well as the deformation network are learned via reference view photometric loss, score distillation loss as well as other regularizers in a two-stage manner. Extensive experiments demonstrate superior performance of our method. Furthermore, our method is compatible with modern graphic pipelines, showcasing its potential in the 3D gaming and film industry.
GaussianDreamerPro: Text to Manipulable 3D Gaussians with Highly Enhanced Quality
Recently, 3D Gaussian splatting (3D-GS) has achieved great success in reconstructing and rendering real-world scenes. To transfer the high rendering quality to generation tasks, a series of research works attempt to generate 3D-Gaussian assets from text. However, the generated assets have not achieved the same quality as those in reconstruction tasks. We observe that Gaussians tend to grow without control as the generation process may cause indeterminacy. Aiming at highly enhancing the generation quality, we propose a novel framework named GaussianDreamerPro. The main idea is to bind Gaussians to reasonable geometry, which evolves over the whole generation process. Along different stages of our framework, both the geometry and appearance can be enriched progressively. The final output asset is constructed with 3D Gaussians bound to mesh, which shows significantly enhanced details and quality compared with previous methods. Notably, the generated asset can also be seamlessly integrated into downstream manipulation pipelines, e.g. animation, composition, and simulation etc., greatly promoting its potential in wide applications. Demos are available at https://taoranyi.com/gaussiandreamerpro/.
Swift4D:Adaptive divide-and-conquer Gaussian Splatting for compact and efficient reconstruction of dynamic scene
Novel view synthesis has long been a practical but challenging task, although the introduction of numerous methods to solve this problem, even combining advanced representations like 3D Gaussian Splatting, they still struggle to recover high-quality results and often consume too much storage memory and training time. In this paper we propose Swift4D, a divide-and-conquer 3D Gaussian Splatting method that can handle static and dynamic primitives separately, achieving a good trade-off between rendering quality and efficiency, motivated by the fact that most of the scene is the static primitive and does not require additional dynamic properties. Concretely, we focus on modeling dynamic transformations only for the dynamic primitives which benefits both efficiency and quality. We first employ a learnable decomposition strategy to separate the primitives, which relies on an additional parameter to classify primitives as static or dynamic. For the dynamic primitives, we employ a compact multi-resolution 4D Hash mapper to transform these primitives from canonical space into deformation space at each timestamp, and then mix the static and dynamic primitives to produce the final output. This divide-and-conquer method facilitates efficient training and reduces storage redundancy. Our method not only achieves state-of-the-art rendering quality while being 20X faster in training than previous SOTA methods with a minimum storage requirement of only 30MB on real-world datasets. Code is available at https://github.com/WuJH2001/swift4d.
Phidias: A Generative Model for Creating 3D Content from Text, Image, and 3D Conditions with Reference-Augmented Diffusion
In 3D modeling, designers often use an existing 3D model as a reference to create new ones. This practice has inspired the development of Phidias, a novel generative model that uses diffusion for reference-augmented 3D generation. Given an image, our method leverages a retrieved or user-provided 3D reference model to guide the generation process, thereby enhancing the generation quality, generalization ability, and controllability. Our model integrates three key components: 1) meta-ControlNet that dynamically modulates the conditioning strength, 2) dynamic reference routing that mitigates misalignment between the input image and 3D reference, and 3) self-reference augmentations that enable self-supervised training with a progressive curriculum. Collectively, these designs result in a clear improvement over existing methods. Phidias establishes a unified framework for 3D generation using text, image, and 3D conditions with versatile applications.
Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation
We present Hunyuan3D 2.0, an advanced large-scale 3D synthesis system for generating high-resolution textured 3D assets. This system includes two foundation components: a large-scale shape generation model -- Hunyuan3D-DiT, and a large-scale texture synthesis model -- Hunyuan3D-Paint. The shape generative model, built on a scalable flow-based diffusion transformer, aims to create geometry that properly aligns with a given condition image, laying a solid foundation for downstream applications. The texture synthesis model, benefiting from strong geometric and diffusion priors, produces high-resolution and vibrant texture maps for either generated or hand-crafted meshes. Furthermore, we build Hunyuan3D-Studio -- a versatile, user-friendly production platform that simplifies the re-creation process of 3D assets. It allows both professional and amateur users to manipulate or even animate their meshes efficiently. We systematically evaluate our models, showing that Hunyuan3D 2.0 outperforms previous state-of-the-art models, including the open-source models and closed-source models in geometry details, condition alignment, texture quality, and etc. Hunyuan3D 2.0 is publicly released in order to fill the gaps in the open-source 3D community for large-scale foundation generative models. The code and pre-trained weights of our models are available at: https://github.com/Tencent/Hunyuan3D-2
Efficient 3D Articulated Human Generation with Layered Surface Volumes
Access to high-quality and diverse 3D articulated digital human assets is crucial in various applications, ranging from virtual reality to social platforms. Generative approaches, such as 3D generative adversarial networks (GANs), are rapidly replacing laborious manual content creation tools. However, existing 3D GAN frameworks typically rely on scene representations that leverage either template meshes, which are fast but offer limited quality, or volumes, which offer high capacity but are slow to render, thereby limiting the 3D fidelity in GAN settings. In this work, we introduce layered surface volumes (LSVs) as a new 3D object representation for articulated digital humans. LSVs represent a human body using multiple textured mesh layers around a conventional template. These layers are rendered using alpha compositing with fast differentiable rasterization, and they can be interpreted as a volumetric representation that allocates its capacity to a manifold of finite thickness around the template. Unlike conventional single-layer templates that struggle with representing fine off-surface details like hair or accessories, our surface volumes naturally capture such details. LSVs can be articulated, and they exhibit exceptional efficiency in GAN settings, where a 2D generator learns to synthesize the RGBA textures for the individual layers. Trained on unstructured, single-view 2D image datasets, our LSV-GAN generates high-quality and view-consistent 3D articulated digital humans without the need for view-inconsistent 2D upsampling networks.
DreamArt: Generating Interactable Articulated Objects from a Single Image
Generating articulated objects, such as laptops and microwaves, is a crucial yet challenging task with extensive applications in Embodied AI and AR/VR. Current image-to-3D methods primarily focus on surface geometry and texture, neglecting part decomposition and articulation modeling. Meanwhile, neural reconstruction approaches (e.g., NeRF or Gaussian Splatting) rely on dense multi-view or interaction data, limiting their scalability. In this paper, we introduce DreamArt, a novel framework for generating high-fidelity, interactable articulated assets from single-view images. DreamArt employs a three-stage pipeline: firstly, it reconstructs part-segmented and complete 3D object meshes through a combination of image-to-3D generation, mask-prompted 3D segmentation, and part amodal completion. Second, we fine-tune a video diffusion model to capture part-level articulation priors, leveraging movable part masks as prompt and amodal images to mitigate ambiguities caused by occlusion. Finally, DreamArt optimizes the articulation motion, represented by a dual quaternion, and conducts global texture refinement and repainting to ensure coherent, high-quality textures across all parts. Experimental results demonstrate that DreamArt effectively generates high-quality articulated objects, possessing accurate part shape, high appearance fidelity, and plausible articulation, thereby providing a scalable solution for articulated asset generation. Our project page is available at https://dream-art-0.github.io/DreamArt/.
MeshArt: Generating Articulated Meshes with Structure-guided Transformers
Articulated 3D object generation is fundamental for creating realistic, functional, and interactable virtual assets which are not simply static. We introduce MeshArt, a hierarchical transformer-based approach to generate articulated 3D meshes with clean, compact geometry, reminiscent of human-crafted 3D models. We approach articulated mesh generation in a part-by-part fashion across two stages. First, we generate a high-level articulation-aware object structure; then, based on this structural information, we synthesize each part's mesh faces. Key to our approach is modeling both articulation structures and part meshes as sequences of quantized triangle embeddings, leading to a unified hierarchical framework with transformers for autoregressive generation. Object part structures are first generated as their bounding primitives and articulation modes; a second transformer, guided by these articulation structures, then generates each part's mesh triangles. To ensure coherency among generated parts, we introduce structure-guided conditioning that also incorporates local part mesh connectivity. MeshArt shows significant improvements over state of the art, with 57.1% improvement in structure coverage and a 209-point improvement in mesh generation FID.
Real-time Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian Splatting
Reconstructing dynamic 3D scenes from 2D images and generating diverse views over time is challenging due to scene complexity and temporal dynamics. Despite advancements in neural implicit models, limitations persist: (i) Inadequate Scene Structure: Existing methods struggle to reveal the spatial and temporal structure of dynamic scenes from directly learning the complex 6D plenoptic function. (ii) Scaling Deformation Modeling: Explicitly modeling scene element deformation becomes impractical for complex dynamics. To address these issues, we consider the spacetime as an entirety and propose to approximate the underlying spatio-temporal 4D volume of a dynamic scene by optimizing a collection of 4D primitives, with explicit geometry and appearance modeling. Learning to optimize the 4D primitives enables us to synthesize novel views at any desired time with our tailored rendering routine. Our model is conceptually simple, consisting of a 4D Gaussian parameterized by anisotropic ellipses that can rotate arbitrarily in space and time, as well as view-dependent and time-evolved appearance represented by the coefficient of 4D spherindrical harmonics. This approach offers simplicity, flexibility for variable-length video and end-to-end training, and efficient real-time rendering, making it suitable for capturing complex dynamic scene motions. Experiments across various benchmarks, including monocular and multi-view scenarios, demonstrate our 4DGS model's superior visual quality and efficiency.
Voyaging into Perpetual Dynamic Scenes from a Single View
The problem of generating a perpetual dynamic scene from a single view is an important problem with widespread applications in augmented and virtual reality, and robotics. However, since dynamic scenes regularly change over time, a key challenge is to ensure that different generated views be consistent with the underlying 3D motions. Prior work learns such consistency by training on multiple views, but the generated scene regions often interpolate between training views and fail to generate perpetual views. To address this issue, we propose DynamicVoyager, which reformulates dynamic scene generation as a scene outpainting problem with new dynamic content. As 2D outpainting models struggle at generating 3D consistent motions from a single 2D view, we enrich 2D pixels with information from their 3D rays that facilitates learning of 3D motion consistency. More specifically, we first map the single-view video input to a dynamic point cloud using the estimated video depths. We then render a partial video of the point cloud from a novel view and outpaint the missing regions using ray information (e.g., the distance from a ray to the point cloud) to generate 3D consistent motions. Next, we use the outpainted video to update the point cloud, which is used for outpainting the scene from future novel views. Moreover, we can control the generated content with the input text prompt. Experiments show that our model can generate perpetual scenes with consistent motions along fly-through cameras. Project page: https://tianfr.github.io/DynamicVoyager.
CaPa: Carve-n-Paint Synthesis for Efficient 4K Textured Mesh Generation
The synthesis of high-quality 3D assets from textual or visual inputs has become a central objective in modern generative modeling. Despite the proliferation of 3D generation algorithms, they frequently grapple with challenges such as multi-view inconsistency, slow generation times, low fidelity, and surface reconstruction problems. While some studies have addressed some of these issues, a comprehensive solution remains elusive. In this paper, we introduce CaPa, a carve-and-paint framework that generates high-fidelity 3D assets efficiently. CaPa employs a two-stage process, decoupling geometry generation from texture synthesis. Initially, a 3D latent diffusion model generates geometry guided by multi-view inputs, ensuring structural consistency across perspectives. Subsequently, leveraging a novel, model-agnostic Spatially Decoupled Attention, the framework synthesizes high-resolution textures (up to 4K) for a given geometry. Furthermore, we propose a 3D-aware occlusion inpainting algorithm that fills untextured regions, resulting in cohesive results across the entire model. This pipeline generates high-quality 3D assets in less than 30 seconds, providing ready-to-use outputs for commercial applications. Experimental results demonstrate that CaPa excels in both texture fidelity and geometric stability, establishing a new standard for practical, scalable 3D asset generation.
Droplet3D: Commonsense Priors from Videos Facilitate 3D Generation
Scaling laws have validated the success and promise of large-data-trained models in creative generation across text, image, and video domains. However, this paradigm faces data scarcity in the 3D domain, as there is far less of it available on the internet compared to the aforementioned modalities. Fortunately, there exist adequate videos that inherently contain commonsense priors, offering an alternative supervisory signal to mitigate the generalization bottleneck caused by limited native 3D data. On the one hand, videos capturing multiple views of an object or scene provide a spatial consistency prior for 3D generation. On the other hand, the rich semantic information contained within the videos enables the generated content to be more faithful to the text prompts and semantically plausible. This paper explores how to apply the video modality in 3D asset generation, spanning datasets to models. We introduce Droplet3D-4M, the first large-scale video dataset with multi-view level annotations, and train Droplet3D, a generative model supporting both image and dense text input. Extensive experiments validate the effectiveness of our approach, demonstrating its ability to produce spatially consistent and semantically plausible content. Moreover, in contrast to the prevailing 3D solutions, our approach exhibits the potential for extension to scene-level applications. This indicates that the commonsense priors from the videos significantly facilitate 3D creation. We have open-sourced all resources including the dataset, code, technical framework, and model weights: https://dropletx.github.io/.
HexaGen3D: StableDiffusion is just one step away from Fast and Diverse Text-to-3D Generation
Despite the latest remarkable advances in generative modeling, efficient generation of high-quality 3D assets from textual prompts remains a difficult task. A key challenge lies in data scarcity: the most extensive 3D datasets encompass merely millions of assets, while their 2D counterparts contain billions of text-image pairs. To address this, we propose a novel approach which harnesses the power of large, pretrained 2D diffusion models. More specifically, our approach, HexaGen3D, fine-tunes a pretrained text-to-image model to jointly predict 6 orthographic projections and the corresponding latent triplane. We then decode these latents to generate a textured mesh. HexaGen3D does not require per-sample optimization, and can infer high-quality and diverse objects from textual prompts in 7 seconds, offering significantly better quality-to-latency trade-offs when comparing to existing approaches. Furthermore, HexaGen3D demonstrates strong generalization to new objects or compositions.
Interactive3D: Create What You Want by Interactive 3D Generation
3D object generation has undergone significant advancements, yielding high-quality results. However, fall short of achieving precise user control, often yielding results that do not align with user expectations, thus limiting their applicability. User-envisioning 3D object generation faces significant challenges in realizing its concepts using current generative models due to limited interaction capabilities. Existing methods mainly offer two approaches: (i) interpreting textual instructions with constrained controllability, or (ii) reconstructing 3D objects from 2D images. Both of them limit customization to the confines of the 2D reference and potentially introduce undesirable artifacts during the 3D lifting process, restricting the scope for direct and versatile 3D modifications. In this work, we introduce Interactive3D, an innovative framework for interactive 3D generation that grants users precise control over the generative process through extensive 3D interaction capabilities. Interactive3D is constructed in two cascading stages, utilizing distinct 3D representations. The first stage employs Gaussian Splatting for direct user interaction, allowing modifications and guidance of the generative direction at any intermediate step through (i) Adding and Removing components, (ii) Deformable and Rigid Dragging, (iii) Geometric Transformations, and (iv) Semantic Editing. Subsequently, the Gaussian splats are transformed into InstantNGP. We introduce a novel (v) Interactive Hash Refinement module to further add details and extract the geometry in the second stage. Our experiments demonstrate that Interactive3D markedly improves the controllability and quality of 3D generation. Our project webpage is available at https://interactive-3d.github.io/.
UniLat3D: Geometry-Appearance Unified Latents for Single-Stage 3D Generation
High-fidelity 3D asset generation is crucial for various industries. While recent 3D pretrained models show strong capability in producing realistic content, most are built upon diffusion models and follow a two-stage pipeline that first generates geometry and then synthesizes appearance. Such a decoupled design tends to produce geometry-texture misalignment and non-negligible cost. In this paper, we propose UniLat3D, a unified framework that encodes geometry and appearance in a single latent space, enabling direct single-stage generation. Our key contribution is a geometry-appearance Unified VAE, which compresses high-resolution sparse features into a compact latent representation -- UniLat. UniLat integrates structural and visual information into a dense low-resolution latent, which can be efficiently decoded into diverse 3D formats, e.g., 3D Gaussians and meshes. Based on this unified representation, we train a single flow-matching model to map Gaussian noise directly into UniLat, eliminating redundant stages. Trained solely on public datasets, UniLat3D produces high-quality 3D assets in seconds from a single image, achieving superior appearance fidelity and geometric quality. More demos \& code are available at https://unilat3d.github.io/
DreamCraft3D++: Efficient Hierarchical 3D Generation with Multi-Plane Reconstruction Model
We introduce DreamCraft3D++, an extension of DreamCraft3D that enables efficient high-quality generation of complex 3D assets. DreamCraft3D++ inherits the multi-stage generation process of DreamCraft3D, but replaces the time-consuming geometry sculpting optimization with a feed-forward multi-plane based reconstruction model, speeding up the process by 1000x. For texture refinement, we propose a training-free IP-Adapter module that is conditioned on the enhanced multi-view images to enhance texture and geometry consistency, providing a 4x faster alternative to DreamCraft3D's DreamBooth fine-tuning. Experiments on diverse datasets demonstrate DreamCraft3D++'s ability to generate creative 3D assets with intricate geometry and realistic 360{\deg} textures, outperforming state-of-the-art image-to-3D methods in quality and speed. The full implementation will be open-sourced to enable new possibilities in 3D content creation.
Bringing Objects to Life: 4D generation from 3D objects
Recent advancements in generative modeling now enable the creation of 4D content (moving 3D objects) controlled with text prompts. 4D generation has large potential in applications like virtual worlds, media, and gaming, but existing methods provide limited control over the appearance and geometry of generated content. In this work, we introduce a method for animating user-provided 3D objects by conditioning on textual prompts to guide 4D generation, enabling custom animations while maintaining the identity of the original object. We first convert a 3D mesh into a ``static" 4D Neural Radiance Field (NeRF) that preserves the visual attributes of the input object. Then, we animate the object using an Image-to-Video diffusion model driven by text. To improve motion realism, we introduce an incremental viewpoint selection protocol for sampling perspectives to promote lifelike movement and a masked Score Distillation Sampling (SDS) loss, which leverages attention maps to focus optimization on relevant regions. We evaluate our model in terms of temporal coherence, prompt adherence, and visual fidelity and find that our method outperforms baselines that are based on other approaches, achieving up to threefold improvements in identity preservation measured using LPIPS scores, and effectively balancing visual quality with dynamic content.
4K4D: Real-Time 4D View Synthesis at 4K Resolution
This paper targets high-fidelity and real-time view synthesis of dynamic 3D scenes at 4K resolution. Recently, some methods on dynamic view synthesis have shown impressive rendering quality. However, their speed is still limited when rendering high-resolution images. To overcome this problem, we propose 4K4D, a 4D point cloud representation that supports hardware rasterization and enables unprecedented rendering speed. Our representation is built on a 4D feature grid so that the points are naturally regularized and can be robustly optimized. In addition, we design a novel hybrid appearance model that significantly boosts the rendering quality while preserving efficiency. Moreover, we develop a differentiable depth peeling algorithm to effectively learn the proposed model from RGB videos. Experiments show that our representation can be rendered at over 400 FPS on the DNA-Rendering dataset at 1080p resolution and 80 FPS on the ENeRF-Outdoor dataset at 4K resolution using an RTX 4090 GPU, which is 30x faster than previous methods and achieves the state-of-the-art rendering quality. We will release the code for reproducibility.
A Unified Approach for Text- and Image-guided 4D Scene Generation
Large-scale diffusion generative models are greatly simplifying image, video and 3D asset creation from user-provided text prompts and images. However, the challenging problem of text-to-4D dynamic 3D scene generation with diffusion guidance remains largely unexplored. We propose Dream-in-4D, which features a novel two-stage approach for text-to-4D synthesis, leveraging (1) 3D and 2D diffusion guidance to effectively learn a high-quality static 3D asset in the first stage; (2) a deformable neural radiance field that explicitly disentangles the learned static asset from its deformation, preserving quality during motion learning; and (3) a multi-resolution feature grid for the deformation field with a displacement total variation loss to effectively learn motion with video diffusion guidance in the second stage. Through a user preference study, we demonstrate that our approach significantly advances image and motion quality, 3D consistency and text fidelity for text-to-4D generation compared to baseline approaches. Thanks to its motion-disentangled representation, Dream-in-4D can also be easily adapted for controllable generation where appearance is defined by one or multiple images, without the need to modify the motion learning stage. Thus, our method offers, for the first time, a unified approach for text-to-4D, image-to-4D and personalized 4D generation tasks.
V3D: Video Diffusion Models are Effective 3D Generators
Automatic 3D generation has recently attracted widespread attention. Recent methods have greatly accelerated the generation speed, but usually produce less-detailed objects due to limited model capacity or 3D data. Motivated by recent advancements in video diffusion models, we introduce V3D, which leverages the world simulation capacity of pre-trained video diffusion models to facilitate 3D generation. To fully unleash the potential of video diffusion to perceive the 3D world, we further introduce geometrical consistency prior and extend the video diffusion model to a multi-view consistent 3D generator. Benefiting from this, the state-of-the-art video diffusion model could be fine-tuned to generate 360degree orbit frames surrounding an object given a single image. With our tailored reconstruction pipelines, we can generate high-quality meshes or 3D Gaussians within 3 minutes. Furthermore, our method can be extended to scene-level novel view synthesis, achieving precise control over the camera path with sparse input views. Extensive experiments demonstrate the superior performance of the proposed approach, especially in terms of generation quality and multi-view consistency. Our code is available at https://github.com/heheyas/V3D
CoCo4D: Comprehensive and Complex 4D Scene Generation
Existing 4D synthesis methods primarily focus on object-level generation or dynamic scene synthesis with limited novel views, restricting their ability to generate multi-view consistent and immersive dynamic 4D scenes. To address these constraints, we propose a framework (dubbed as CoCo4D) for generating detailed dynamic 4D scenes from text prompts, with the option to include images. Our method leverages the crucial observation that articulated motion typically characterizes foreground objects, whereas background alterations are less pronounced. Consequently, CoCo4D divides 4D scene synthesis into two responsibilities: modeling the dynamic foreground and creating the evolving background, both directed by a reference motion sequence. Given a text prompt and an optional reference image, CoCo4D first generates an initial motion sequence utilizing video diffusion models. This motion sequence then guides the synthesis of both the dynamic foreground object and the background using a novel progressive outpainting scheme. To ensure seamless integration of the moving foreground object within the dynamic background, CoCo4D optimizes a parametric trajectory for the foreground, resulting in realistic and coherent blending. Extensive experiments show that CoCo4D achieves comparable or superior performance in 4D scene generation compared to existing methods, demonstrating its effectiveness and efficiency. More results are presented on our website https://colezwhy.github.io/coco4d/.
PartGen: Part-level 3D Generation and Reconstruction with Multi-View Diffusion Models
Text- or image-to-3D generators and 3D scanners can now produce 3D assets with high-quality shapes and textures. These assets typically consist of a single, fused representation, like an implicit neural field, a Gaussian mixture, or a mesh, without any useful structure. However, most applications and creative workflows require assets to be made of several meaningful parts that can be manipulated independently. To address this gap, we introduce PartGen, a novel approach that generates 3D objects composed of meaningful parts starting from text, an image, or an unstructured 3D object. First, given multiple views of a 3D object, generated or rendered, a multi-view diffusion model extracts a set of plausible and view-consistent part segmentations, dividing the object into parts. Then, a second multi-view diffusion model takes each part separately, fills in the occlusions, and uses those completed views for 3D reconstruction by feeding them to a 3D reconstruction network. This completion process considers the context of the entire object to ensure that the parts integrate cohesively. The generative completion model can make up for the information missing due to occlusions; in extreme cases, it can hallucinate entirely invisible parts based on the input 3D asset. We evaluate our method on generated and real 3D assets and show that it outperforms segmentation and part-extraction baselines by a large margin. We also showcase downstream applications such as 3D part editing.
3DTopia-XL: Scaling High-quality 3D Asset Generation via Primitive Diffusion
The increasing demand for high-quality 3D assets across various industries necessitates efficient and automated 3D content creation. Despite recent advancements in 3D generative models, existing methods still face challenges with optimization speed, geometric fidelity, and the lack of assets for physically based rendering (PBR). In this paper, we introduce 3DTopia-XL, a scalable native 3D generative model designed to overcome these limitations. 3DTopia-XL leverages a novel primitive-based 3D representation, PrimX, which encodes detailed shape, albedo, and material field into a compact tensorial format, facilitating the modeling of high-resolution geometry with PBR assets. On top of the novel representation, we propose a generative framework based on Diffusion Transformer (DiT), which comprises 1) Primitive Patch Compression, 2) and Latent Primitive Diffusion. 3DTopia-XL learns to generate high-quality 3D assets from textual or visual inputs. We conduct extensive qualitative and quantitative experiments to demonstrate that 3DTopia-XL significantly outperforms existing methods in generating high-quality 3D assets with fine-grained textures and materials, efficiently bridging the quality gap between generative models and real-world applications.
DreamPhysics: Learning Physics-Based 3D Dynamics with Video Diffusion Priors
Dynamic 3D interaction has been attracting a lot of attention recently. However, creating such 4D content remains challenging. One solution is to animate 3D scenes with physics-based simulation, which requires manually assigning precise physical properties to the object or the simulated results would become unnatural. Another solution is to learn the deformation of 3D objects with the distillation of video generative models, which, however, tends to produce 3D videos with small and discontinuous motions due to the inappropriate extraction and application of physics priors. In this work, to combine the strengths and complementing shortcomings of the above two solutions, we propose to learn the physical properties of a material field with video diffusion priors, and then utilize a physics-based Material-Point-Method (MPM) simulator to generate 4D content with realistic motions. In particular, we propose motion distillation sampling to emphasize video motion information during distillation. In addition, to facilitate the optimization, we further propose a KAN-based material field with frame boosting. Experimental results demonstrate that our method enjoys more realistic motions than state-of-the-arts do.
MeshAnything: Artist-Created Mesh Generation with Autoregressive Transformers
Recently, 3D assets created via reconstruction and generation have matched the quality of manually crafted assets, highlighting their potential for replacement. However, this potential is largely unrealized because these assets always need to be converted to meshes for 3D industry applications, and the meshes produced by current mesh extraction methods are significantly inferior to Artist-Created Meshes (AMs), i.e., meshes created by human artists. Specifically, current mesh extraction methods rely on dense faces and ignore geometric features, leading to inefficiencies, complicated post-processing, and lower representation quality. To address these issues, we introduce MeshAnything, a model that treats mesh extraction as a generation problem, producing AMs aligned with specified shapes. By converting 3D assets in any 3D representation into AMs, MeshAnything can be integrated with various 3D asset production methods, thereby enhancing their application across the 3D industry. The architecture of MeshAnything comprises a VQ-VAE and a shape-conditioned decoder-only transformer. We first learn a mesh vocabulary using the VQ-VAE, then train the shape-conditioned decoder-only transformer on this vocabulary for shape-conditioned autoregressive mesh generation. Our extensive experiments show that our method generates AMs with hundreds of times fewer faces, significantly improving storage, rendering, and simulation efficiencies, while achieving precision comparable to previous methods.
Recent Advance in 3D Object and Scene Generation: A Survey
In recent years, the demand for 3D content has grown exponentially with intelligent upgrading of interactive media, extended reality (XR), and Metaverse industries. In order to overcome the limitation of traditional manual modeling approaches, such as labor-intensive workflows and prolonged production cycles, revolutionary advances have been achieved through the convergence of novel 3D representation paradigms and artificial intelligence generative technologies. In this survey, we conduct a systematically review of the cutting-edge achievements in static 3D object and scene generation, as well as establish a comprehensive technical framework through systematic categorization. Specifically, we initiate our analysis with mainstream 3D object representations, followed by in-depth exploration of two principal technical pathways in object generation: data-driven supervised learning methods and deep generative model-based approaches. Regarding scene generation, we focus on three dominant paradigms: layout-guided compositional synthesis, 2D prior-based scene generation, and rule-driven modeling. Finally, we critically examine persistent challenges in 3D generation and propose potential research directions for future investigation. This survey aims to provide readers with a structured understanding of state-of-the-art 3D generation technologies while inspiring researchers to undertake more exploration in this domain.
Puppeteer: Rig and Animate Your 3D Models
Modern interactive applications increasingly demand dynamic 3D content, yet the transformation of static 3D models into animated assets constitutes a significant bottleneck in content creation pipelines. While recent advances in generative AI have revolutionized static 3D model creation, rigging and animation continue to depend heavily on expert intervention. We present Puppeteer, a comprehensive framework that addresses both automatic rigging and animation for diverse 3D objects. Our system first predicts plausible skeletal structures via an auto-regressive transformer that introduces a joint-based tokenization strategy for compact representation and a hierarchical ordering methodology with stochastic perturbation that enhances bidirectional learning capabilities. It then infers skinning weights via an attention-based architecture incorporating topology-aware joint attention that explicitly encodes inter-joint relationships based on skeletal graph distances. Finally, we complement these rigging advances with a differentiable optimization-based animation pipeline that generates stable, high-fidelity animations while being computationally more efficient than existing approaches. Extensive evaluations across multiple benchmarks demonstrate that our method significantly outperforms state-of-the-art techniques in both skeletal prediction accuracy and skinning quality. The system robustly processes diverse 3D content, ranging from professionally designed game assets to AI-generated shapes, producing temporally coherent animations that eliminate the jittering issues common in existing methods.
Hash3D: Training-free Acceleration for 3D Generation
The evolution of 3D generative modeling has been notably propelled by the adoption of 2D diffusion models. Despite this progress, the cumbersome optimization process per se presents a critical hurdle to efficiency. In this paper, we introduce Hash3D, a universal acceleration for 3D generation without model training. Central to Hash3D is the insight that feature-map redundancy is prevalent in images rendered from camera positions and diffusion time-steps in close proximity. By effectively hashing and reusing these feature maps across neighboring timesteps and camera angles, Hash3D substantially prevents redundant calculations, thus accelerating the diffusion model's inference in 3D generation tasks. We achieve this through an adaptive grid-based hashing. Surprisingly, this feature-sharing mechanism not only speed up the generation but also enhances the smoothness and view consistency of the synthesized 3D objects. Our experiments covering 5 text-to-3D and 3 image-to-3D models, demonstrate Hash3D's versatility to speed up optimization, enhancing efficiency by 1.3 to 4 times. Additionally, Hash3D's integration with 3D Gaussian splatting largely speeds up 3D model creation, reducing text-to-3D processing to about 10 minutes and image-to-3D conversion to roughly 30 seconds. The project page is at https://adamdad.github.io/hash3D/.
GeoSAM2: Unleashing the Power of SAM2 for 3D Part Segmentation
Modern 3D generation methods can rapidly create shapes from sparse or single views, but their outputs often lack geometric detail due to computational constraints. We present DetailGen3D, a generative approach specifically designed to enhance these generated 3D shapes. Our key insight is to model the coarse-to-fine transformation directly through data-dependent flows in latent space, avoiding the computational overhead of large-scale 3D generative models. We introduce a token matching strategy that ensures accurate spatial correspondence during refinement, enabling local detail synthesis while preserving global structure. By carefully designing our training data to match the characteristics of synthesized coarse shapes, our method can effectively enhance shapes produced by various 3D generation and reconstruction approaches, from single-view to sparse multi-view inputs. Extensive experiments demonstrate that DetailGen3D achieves high-fidelity geometric detail synthesis while maintaining efficiency in training.
Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation
Diffusion models have achieved great success in generating 2D images. However, the quality and generalizability of 3D content generation remain limited. State-of-the-art methods often require large-scale 3D assets for training, which are challenging to collect. In this work, we introduce Kiss3DGen (Keep It Simple and Straightforward in 3D Generation), an efficient framework for generating, editing, and enhancing 3D objects by repurposing a well-trained 2D image diffusion model for 3D generation. Specifically, we fine-tune a diffusion model to generate ''3D Bundle Image'', a tiled representation composed of multi-view images and their corresponding normal maps. The normal maps are then used to reconstruct a 3D mesh, and the multi-view images provide texture mapping, resulting in a complete 3D model. This simple method effectively transforms the 3D generation problem into a 2D image generation task, maximizing the utilization of knowledge in pretrained diffusion models. Furthermore, we demonstrate that our Kiss3DGen model is compatible with various diffusion model techniques, enabling advanced features such as 3D editing, mesh and texture enhancement, etc. Through extensive experiments, we demonstrate the effectiveness of our approach, showcasing its ability to produce high-quality 3D models efficiently.
Im4D: High-Fidelity and Real-Time Novel View Synthesis for Dynamic Scenes
This paper aims to tackle the challenge of dynamic view synthesis from multi-view videos. The key observation is that while previous grid-based methods offer consistent rendering, they fall short in capturing appearance details of a complex dynamic scene, a domain where multi-view image-based rendering methods demonstrate the opposite properties. To combine the best of two worlds, we introduce Im4D, a hybrid scene representation that consists of a grid-based geometry representation and a multi-view image-based appearance representation. Specifically, the dynamic geometry is encoded as a 4D density function composed of spatiotemporal feature planes and a small MLP network, which globally models the scene structure and facilitates the rendering consistency. We represent the scene appearance by the original multi-view videos and a network that learns to predict the color of a 3D point from image features, instead of memorizing detailed appearance totally with networks, thereby naturally making the learning of networks easier. Our method is evaluated on five dynamic view synthesis datasets including DyNeRF, ZJU-MoCap, NHR, DNA-Rendering and ENeRF-Outdoor datasets. The results show that Im4D exhibits state-of-the-art performance in rendering quality and can be trained efficiently, while realizing real-time rendering with a speed of 79.8 FPS for 512x512 images, on a single RTX 3090 GPU.
RGM: Reconstructing High-fidelity 3D Car Assets with Relightable 3D-GS Generative Model from a Single Image
The generation of high-quality 3D car assets is essential for various applications, including video games, autonomous driving, and virtual reality. Current 3D generation methods utilizing NeRF or 3D-GS as representations for 3D objects, generate a Lambertian object under fixed lighting and lack separated modelings for material and global illumination. As a result, the generated assets are unsuitable for relighting under varying lighting conditions, limiting their applicability in downstream tasks. To address this challenge, we propose a novel relightable 3D object generative framework that automates the creation of 3D car assets, enabling the swift and accurate reconstruction of a vehicle's geometry, texture, and material properties from a single input image. Our approach begins with introducing a large-scale synthetic car dataset comprising over 1,000 high-precision 3D vehicle models. We represent 3D objects using global illumination and relightable 3D Gaussian primitives integrating with BRDF parameters. Building on this representation, we introduce a feed-forward model that takes images as input and outputs both relightable 3D Gaussians and global illumination parameters. Experimental results demonstrate that our method produces photorealistic 3D car assets that can be seamlessly integrated into road scenes with different illuminations, which offers substantial practical benefits for industrial applications.
VideoMV: Consistent Multi-View Generation Based on Large Video Generative Model
Generating multi-view images based on text or single-image prompts is a critical capability for the creation of 3D content. Two fundamental questions on this topic are what data we use for training and how to ensure multi-view consistency. This paper introduces a novel framework that makes fundamental contributions to both questions. Unlike leveraging images from 2D diffusion models for training, we propose a dense consistent multi-view generation model that is fine-tuned from off-the-shelf video generative models. Images from video generative models are more suitable for multi-view generation because the underlying network architecture that generates them employs a temporal module to enforce frame consistency. Moreover, the video data sets used to train these models are abundant and diverse, leading to a reduced train-finetuning domain gap. To enhance multi-view consistency, we introduce a 3D-Aware Denoising Sampling, which first employs a feed-forward reconstruction module to get an explicit global 3D model, and then adopts a sampling strategy that effectively involves images rendered from the global 3D model into the denoising sampling loop to improve the multi-view consistency of the final images. As a by-product, this module also provides a fast way to create 3D assets represented by 3D Gaussians within a few seconds. Our approach can generate 24 dense views and converges much faster in training than state-of-the-art approaches (4 GPU hours versus many thousand GPU hours) with comparable visual quality and consistency. By further fine-tuning, our approach outperforms existing state-of-the-art methods in both quantitative metrics and visual effects. Our project page is aigc3d.github.io/VideoMV.
GaussianAnything: Interactive Point Cloud Latent Diffusion for 3D Generation
While 3D content generation has advanced significantly, existing methods still face challenges with input formats, latent space design, and output representations. This paper introduces a novel 3D generation framework that addresses these challenges, offering scalable, high-quality 3D generation with an interactive Point Cloud-structured Latent space. Our framework employs a Variational Autoencoder (VAE) with multi-view posed RGB-D(epth)-N(ormal) renderings as input, using a unique latent space design that preserves 3D shape information, and incorporates a cascaded latent diffusion model for improved shape-texture disentanglement. The proposed method, GaussianAnything, supports multi-modal conditional 3D generation, allowing for point cloud, caption, and single/multi-view image inputs. Notably, the newly proposed latent space naturally enables geometry-texture disentanglement, thus allowing 3D-aware editing. Experimental results demonstrate the effectiveness of our approach on multiple datasets, outperforming existing methods in both text- and image-conditioned 3D generation.
SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer
Recent advances in 2D/3D generative models enable the generation of dynamic 3D objects from a single-view video. Existing approaches utilize score distillation sampling to form the dynamic scene as dynamic NeRF or dense 3D Gaussians. However, these methods struggle to strike a balance among reference view alignment, spatio-temporal consistency, and motion fidelity under single-view conditions due to the implicit nature of NeRF or the intricate dense Gaussian motion prediction. To address these issues, this paper proposes an efficient, sparse-controlled video-to-4D framework named SC4D, that decouples motion and appearance to achieve superior video-to-4D generation. Moreover, we introduce Adaptive Gaussian (AG) initialization and Gaussian Alignment (GA) loss to mitigate shape degeneration issue, ensuring the fidelity of the learned motion and shape. Comprehensive experimental results demonstrate that our method surpasses existing methods in both quality and efficiency. In addition, facilitated by the disentangled modeling of motion and appearance of SC4D, we devise a novel application that seamlessly transfers the learned motion onto a diverse array of 4D entities according to textual descriptions.
DreamBooth3D: Subject-Driven Text-to-3D Generation
We present DreamBooth3D, an approach to personalize text-to-3D generative models from as few as 3-6 casually captured images of a subject. Our approach combines recent advances in personalizing text-to-image models (DreamBooth) with text-to-3D generation (DreamFusion). We find that naively combining these methods fails to yield satisfactory subject-specific 3D assets due to personalized text-to-image models overfitting to the input viewpoints of the subject. We overcome this through a 3-stage optimization strategy where we jointly leverage the 3D consistency of neural radiance fields together with the personalization capability of text-to-image models. Our method can produce high-quality, subject-specific 3D assets with text-driven modifications such as novel poses, colors and attributes that are not seen in any of the input images of the subject.
SynCity: Training-Free Generation of 3D Worlds
We address the challenge of generating 3D worlds from textual descriptions. We propose SynCity, a training- and optimization-free approach, which leverages the geometric precision of pre-trained 3D generative models and the artistic versatility of 2D image generators to create large, high-quality 3D spaces. While most 3D generative models are object-centric and cannot generate large-scale worlds, we show how 3D and 2D generators can be combined to generate ever-expanding scenes. Through a tile-based approach, we allow fine-grained control over the layout and the appearance of scenes. The world is generated tile-by-tile, and each new tile is generated within its world-context and then fused with the scene. SynCity generates compelling and immersive scenes that are rich in detail and diversity.
Imaginarium: Vision-guided High-Quality 3D Scene Layout Generation
Generating artistic and coherent 3D scene layouts is crucial in digital content creation. Traditional optimization-based methods are often constrained by cumbersome manual rules, while deep generative models face challenges in producing content with richness and diversity. Furthermore, approaches that utilize large language models frequently lack robustness and fail to accurately capture complex spatial relationships. To address these challenges, this paper presents a novel vision-guided 3D layout generation system. We first construct a high-quality asset library containing 2,037 scene assets and 147 3D scene layouts. Subsequently, we employ an image generation model to expand prompt representations into images, fine-tuning it to align with our asset library. We then develop a robust image parsing module to recover the 3D layout of scenes based on visual semantics and geometric information. Finally, we optimize the scene layout using scene graphs and overall visual semantics to ensure logical coherence and alignment with the images. Extensive user testing demonstrates that our algorithm significantly outperforms existing methods in terms of layout richness and quality. The code and dataset will be available at https://github.com/HiHiAllen/Imaginarium.
TUVF: Learning Generalizable Texture UV Radiance Fields
Textures are a vital aspect of creating visually appealing and realistic 3D models. In this paper, we study the problem of generating high-fidelity texture given shapes of 3D assets, which has been relatively less explored compared with generic 3D shape modeling. Our goal is to facilitate a controllable texture generation process, such that one texture code can correspond to a particular appearance style independent of any input shapes from a category. We introduce Texture UV Radiance Fields (TUVF) that generate textures in a learnable UV sphere space rather than directly on the 3D shape. This allows the texture to be disentangled from the underlying shape and transferable to other shapes that share the same UV space, i.e., from the same category. We integrate the UV sphere space with the radiance field, which provides a more efficient and accurate representation of textures than traditional texture maps. We perform our experiments on real-world object datasets where we achieve not only realistic synthesis but also substantial improvements over state-of-the-arts on texture controlling and editing. Project Page: https://www.anjiecheng.me/TUVF
BoostDream: Efficient Refining for High-Quality Text-to-3D Generation from Multi-View Diffusion
Witnessing the evolution of text-to-image diffusion models, significant strides have been made in text-to-3D generation. Currently, two primary paradigms dominate the field of text-to-3D: the feed-forward generation solutions, capable of swiftly producing 3D assets but often yielding coarse results, and the Score Distillation Sampling (SDS) based solutions, known for generating high-fidelity 3D assets albeit at a slower pace. The synergistic integration of these methods holds substantial promise for advancing 3D generation techniques. In this paper, we present BoostDream, a highly efficient plug-and-play 3D refining method designed to transform coarse 3D assets into high-quality. The BoostDream framework comprises three distinct processes: (1) We introduce 3D model distillation that fits differentiable representations from the 3D assets obtained through feed-forward generation. (2) A novel multi-view SDS loss is designed, which utilizes a multi-view aware 2D diffusion model to refine the 3D assets. (3) We propose to use prompt and multi-view consistent normal maps as guidance in refinement.Our extensive experiment is conducted on different differentiable 3D representations, revealing that BoostDream excels in generating high-quality 3D assets rapidly, overcoming the Janus problem compared to conventional SDS-based methods. This breakthrough signifies a substantial advancement in both the efficiency and quality of 3D generation processes.
Joint 3D Geometry Reconstruction and Motion Generation for 4D Synthesis from a Single Image
Generating interactive and dynamic 4D scenes from a single static image remains a core challenge. Most existing generate-then-reconstruct and reconstruct-then-generate methods decouple geometry from motion, causing spatiotemporal inconsistencies and poor generalization. To address these, we extend the reconstruct-then-generate framework to jointly perform Motion generation and geometric Reconstruction for 4D Synthesis (MoRe4D). We first introduce TrajScene-60K, a large-scale dataset of 60,000 video samples with dense point trajectories, addressing the scarcity of high-quality 4D scene data. Based on this, we propose a diffusion-based 4D Scene Trajectory Generator (4D-STraG) to jointly generate geometrically consistent and motion-plausible 4D point trajectories. To leverage single-view priors, we design a depth-guided motion normalization strategy and a motion-aware module for effective geometry and dynamics integration. We then propose a 4D View Synthesis Module (4D-ViSM) to render videos with arbitrary camera trajectories from 4D point track representations. Experiments show that MoRe4D generates high-quality 4D scenes with multi-view consistency and rich dynamic details from a single image. Code: https://github.com/Zhangyr2022/MoRe4D.
Dual3D: Efficient and Consistent Text-to-3D Generation with Dual-mode Multi-view Latent Diffusion
We present Dual3D, a novel text-to-3D generation framework that generates high-quality 3D assets from texts in only 1 minute.The key component is a dual-mode multi-view latent diffusion model. Given the noisy multi-view latents, the 2D mode can efficiently denoise them with a single latent denoising network, while the 3D mode can generate a tri-plane neural surface for consistent rendering-based denoising. Most modules for both modes are tuned from a pre-trained text-to-image latent diffusion model to circumvent the expensive cost of training from scratch. To overcome the high rendering cost during inference, we propose the dual-mode toggling inference strategy to use only 1/10 denoising steps with 3D mode, successfully generating a 3D asset in just 10 seconds without sacrificing quality. The texture of the 3D asset can be further enhanced by our efficient texture refinement process in a short time. Extensive experiments demonstrate that our method delivers state-of-the-art performance while significantly reducing generation time. Our project page is available at https://dual3d.github.io
Collaborative Control for Geometry-Conditioned PBR Image Generation
Current 3D content generation builds on generative models that output RGB images. Modern graphics pipelines, however, require physically-based rendering (PBR) material properties. We propose to model the PBR image distribution directly to avoid photometric inaccuracies in RGB generation and the inherent ambiguity in extracting PBR from RGB. Existing paradigms for cross-modal finetuning are not suited for PBR generation due to a lack of data and the high dimensionality of the output modalities: we overcome both challenges by retaining a frozen RGB model and tightly linking a newly trained PBR model using a novel cross-network communication paradigm. As the base RGB model is fully frozen, the proposed method does not risk catastrophic forgetting during finetuning and remains compatible with techniques such as IPAdapter pretrained for the base RGB model. We validate our design choices, robustness to data sparsity, and compare against existing paradigms with an extensive experimental section.
Boosting 3D Object Generation through PBR Materials
Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
LIM: Large Interpolator Model for Dynamic Reconstruction
Reconstructing dynamic assets from video data is central to many in computer vision and graphics tasks. Existing 4D reconstruction approaches are limited by category-specific models or slow optimization-based methods. Inspired by the recent Large Reconstruction Model (LRM), we present the Large Interpolation Model (LIM), a transformer-based feed-forward solution, guided by a novel causal consistency loss, for interpolating implicit 3D representations across time. Given implicit 3D representations at times t_0 and t_1, LIM produces a deformed shape at any continuous time tin[t_0,t_1], delivering high-quality interpolated frames in seconds. Furthermore, LIM allows explicit mesh tracking across time, producing a consistently uv-textured mesh sequence ready for integration into existing production pipelines. We also use LIM, in conjunction with a diffusion-based multiview generator, to produce dynamic 4D reconstructions from monocular videos. We evaluate LIM on various dynamic datasets, benchmarking against image-space interpolation methods (e.g., FiLM) and direct triplane linear interpolation, and demonstrate clear advantages. In summary, LIM is the first feed-forward model capable of high-speed tracked 4D asset reconstruction across diverse categories.
3DTopia: Large Text-to-3D Generation Model with Hybrid Diffusion Priors
We present a two-stage text-to-3D generation system, namely 3DTopia, which generates high-quality general 3D assets within 5 minutes using hybrid diffusion priors. The first stage samples from a 3D diffusion prior directly learned from 3D data. Specifically, it is powered by a text-conditioned tri-plane latent diffusion model, which quickly generates coarse 3D samples for fast prototyping. The second stage utilizes 2D diffusion priors to further refine the texture of coarse 3D models from the first stage. The refinement consists of both latent and pixel space optimization for high-quality texture generation. To facilitate the training of the proposed system, we clean and caption the largest open-source 3D dataset, Objaverse, by combining the power of vision language models and large language models. Experiment results are reported qualitatively and quantitatively to show the performance of the proposed system. Our codes and models are available at https://github.com/3DTopia/3DTopia
Edify 3D: Scalable High-Quality 3D Asset Generation
We introduce Edify 3D, an advanced solution designed for high-quality 3D asset generation. Our method first synthesizes RGB and surface normal images of the described object at multiple viewpoints using a diffusion model. The multi-view observations are then used to reconstruct the shape, texture, and PBR materials of the object. Our method can generate high-quality 3D assets with detailed geometry, clean shape topologies, high-resolution textures, and materials within 2 minutes of runtime.
UniTEX: Universal High Fidelity Generative Texturing for 3D Shapes
We present UniTEX, a novel two-stage 3D texture generation framework to create high-quality, consistent textures for 3D assets. Existing approaches predominantly rely on UV-based inpainting to refine textures after reprojecting the generated multi-view images onto the 3D shapes, which introduces challenges related to topological ambiguity. To address this, we propose to bypass the limitations of UV mapping by operating directly in a unified 3D functional space. Specifically, we first propose that lifts texture generation into 3D space via Texture Functions (TFs)--a continuous, volumetric representation that maps any 3D point to a texture value based solely on surface proximity, independent of mesh topology. Then, we propose to predict these TFs directly from images and geometry inputs using a transformer-based Large Texturing Model (LTM). To further enhance texture quality and leverage powerful 2D priors, we develop an advanced LoRA-based strategy for efficiently adapting large-scale Diffusion Transformers (DiTs) for high-quality multi-view texture synthesis as our first stage. Extensive experiments demonstrate that UniTEX achieves superior visual quality and texture integrity compared to existing approaches, offering a generalizable and scalable solution for automated 3D texture generation. Code will available in: https://github.com/YixunLiang/UniTEX.
Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion
Directly generating scenes from satellite imagery offers exciting possibilities for integration into applications like games and map services. However, challenges arise from significant view changes and scene scale. Previous efforts mainly focused on image or video generation, lacking exploration into the adaptability of scene generation for arbitrary views. Existing 3D generation works either operate at the object level or are difficult to utilize the geometry obtained from satellite imagery. To overcome these limitations, we propose a novel architecture for direct 3D scene generation by introducing diffusion models into 3D sparse representations and combining them with neural rendering techniques. Specifically, our approach generates texture colors at the point level for a given geometry using a 3D diffusion model first, which is then transformed into a scene representation in a feed-forward manner. The representation can be utilized to render arbitrary views which would excel in both single-frame quality and inter-frame consistency. Experiments in two city-scale datasets show that our model demonstrates proficiency in generating photo-realistic street-view image sequences and cross-view urban scenes from satellite imagery.
A Comprehensive Survey on 3D Content Generation
Recent years have witnessed remarkable advances in artificial intelligence generated content(AIGC), with diverse input modalities, e.g., text, image, video, audio and 3D. The 3D is the most close visual modality to real-world 3D environment and carries enormous knowledge. The 3D content generation shows both academic and practical values while also presenting formidable technical challenges. This review aims to consolidate developments within the burgeoning domain of 3D content generation. Specifically, a new taxonomy is proposed that categorizes existing approaches into three types: 3D native generative methods, 2D prior-based 3D generative methods, and hybrid 3D generative methods. The survey covers approximately 60 papers spanning the major techniques. Besides, we discuss limitations of current 3D content generation techniques, and point out open challenges as well as promising directions for future work. Accompanied with this survey, we have established a project website where the resources on 3D content generation research are provided. The project page is available at https://github.com/hitcslj/Awesome-AIGC-3D.
4-Doodle: Text to 3D Sketches that Move!
We present a novel task: text-to-3D sketch animation, which aims to bring freeform sketches to life in dynamic 3D space. Unlike prior works focused on photorealistic content generation, we target sparse, stylized, and view-consistent 3D vector sketches, a lightweight and interpretable medium well-suited for visual communication and prototyping. However, this task is very challenging: (i) no paired dataset exists for text and 3D (or 4D) sketches; (ii) sketches require structural abstraction that is difficult to model with conventional 3D representations like NeRFs or point clouds; and (iii) animating such sketches demands temporal coherence and multi-view consistency, which current pipelines do not address. Therefore, we propose 4-Doodle, the first training-free framework for generating dynamic 3D sketches from text. It leverages pretrained image and video diffusion models through a dual-space distillation scheme: one space captures multi-view-consistent geometry using differentiable Bézier curves, while the other encodes motion dynamics via temporally-aware priors. Unlike prior work (e.g., DreamFusion), which optimizes from a single view per step, our multi-view optimization ensures structural alignment and avoids view ambiguity, critical for sparse sketches. Furthermore, we introduce a structure-aware motion module that separates shape-preserving trajectories from deformation-aware changes, enabling expressive motion such as flipping, rotation, and articulated movement. Extensive experiments show that our method produces temporally realistic and structurally stable 3D sketch animations, outperforming existing baselines in both fidelity and controllability. We hope this work serves as a step toward more intuitive and accessible 4D content creation.
Sketch3D: Style-Consistent Guidance for Sketch-to-3D Generation
Recently, image-to-3D approaches have achieved significant results with a natural image as input. However, it is not always possible to access these enriched color input samples in practical applications, where only sketches are available. Existing sketch-to-3D researches suffer from limitations in broad applications due to the challenges of lacking color information and multi-view content. To overcome them, this paper proposes a novel generation paradigm Sketch3D to generate realistic 3D assets with shape aligned with the input sketch and color matching the textual description. Concretely, Sketch3D first instantiates the given sketch in the reference image through the shape-preserving generation process. Second, the reference image is leveraged to deduce a coarse 3D Gaussian prior, and multi-view style-consistent guidance images are generated based on the renderings of the 3D Gaussians. Finally, three strategies are designed to optimize 3D Gaussians, i.e., structural optimization via a distribution transfer mechanism, color optimization with a straightforward MSE loss and sketch similarity optimization with a CLIP-based geometric similarity loss. Extensive visual comparisons and quantitative analysis illustrate the advantage of our Sketch3D in generating realistic 3D assets while preserving consistency with the input.
ShapeGen4D: Towards High Quality 4D Shape Generation from Videos
Video-conditioned 4D shape generation aims to recover time-varying 3D geometry and view-consistent appearance directly from an input video. In this work, we introduce a native video-to-4D shape generation framework that synthesizes a single dynamic 3D representation end-to-end from the video. Our framework introduces three key components based on large-scale pre-trained 3D models: (i) a temporal attention that conditions generation on all frames while producing a time-indexed dynamic representation; (ii) a time-aware point sampling and 4D latent anchoring that promote temporally consistent geometry and texture; and (iii) noise sharing across frames to enhance temporal stability. Our method accurately captures non-rigid motion, volume changes, and even topological transitions without per-frame optimization. Across diverse in-the-wild videos, our method improves robustness and perceptual fidelity and reduces failure modes compared with the baselines.
TiP4GEN: Text to Immersive Panorama 4D Scene Generation
With the rapid advancement and widespread adoption of VR/AR technologies, there is a growing demand for the creation of high-quality, immersive dynamic scenes. However, existing generation works predominantly concentrate on the creation of static scenes or narrow perspective-view dynamic scenes, falling short of delivering a truly 360-degree immersive experience from any viewpoint. In this paper, we introduce TiP4GEN, an advanced text-to-dynamic panorama scene generation framework that enables fine-grained content control and synthesizes motion-rich, geometry-consistent panoramic 4D scenes. TiP4GEN integrates panorama video generation and dynamic scene reconstruction to create 360-degree immersive virtual environments. For video generation, we introduce a Dual-branch Generation Model consisting of a panorama branch and a perspective branch, responsible for global and local view generation, respectively. A bidirectional cross-attention mechanism facilitates comprehensive information exchange between the branches. For scene reconstruction, we propose a Geometry-aligned Reconstruction Model based on 3D Gaussian Splatting. By aligning spatial-temporal point clouds using metric depth maps and initializing scene cameras with estimated poses, our method ensures geometric consistency and temporal coherence for the reconstructed scenes. Extensive experiments demonstrate the effectiveness of our proposed designs and the superiority of TiP4GEN in generating visually compelling and motion-coherent dynamic panoramic scenes. Our project page is at https://ke-xing.github.io/TiP4GEN/.
Hi3DEval: Advancing 3D Generation Evaluation with Hierarchical Validity
Despite rapid advances in 3D content generation, quality assessment for the generated 3D assets remains challenging. Existing methods mainly rely on image-based metrics and operate solely at the object level, limiting their ability to capture spatial coherence, material authenticity, and high-fidelity local details. 1) To address these challenges, we introduce Hi3DEval, a hierarchical evaluation framework tailored for 3D generative content. It combines both object-level and part-level evaluation, enabling holistic assessments across multiple dimensions as well as fine-grained quality analysis. Additionally, we extend texture evaluation beyond aesthetic appearance by explicitly assessing material realism, focusing on attributes such as albedo, saturation, and metallicness. 2) To support this framework, we construct Hi3DBench, a large-scale dataset comprising diverse 3D assets and high-quality annotations, accompanied by a reliable multi-agent annotation pipeline. We further propose a 3D-aware automated scoring system based on hybrid 3D representations. Specifically, we leverage video-based representations for object-level and material-subject evaluations to enhance modeling of spatio-temporal consistency and employ pretrained 3D features for part-level perception. Extensive experiments demonstrate that our approach outperforms existing image-based metrics in modeling 3D characteristics and achieves superior alignment with human preference, providing a scalable alternative to manual evaluations. The project page is available at https://zyh482.github.io/Hi3DEval/.
Tailor3D: Customized 3D Assets Editing and Generation with Dual-Side Images
Recent advances in 3D AIGC have shown promise in directly creating 3D objects from text and images, offering significant cost savings in animation and product design. However, detailed edit and customization of 3D assets remains a long-standing challenge. Specifically, 3D Generation methods lack the ability to follow finely detailed instructions as precisely as their 2D image creation counterparts. Imagine you can get a toy through 3D AIGC but with undesired accessories and dressing. To tackle this challenge, we propose a novel pipeline called Tailor3D, which swiftly creates customized 3D assets from editable dual-side images. We aim to emulate a tailor's ability to locally change objects or perform overall style transfer. Unlike creating 3D assets from multiple views, using dual-side images eliminates conflicts on overlapping areas that occur when editing individual views. Specifically, it begins by editing the front view, then generates the back view of the object through multi-view diffusion. Afterward, it proceeds to edit the back views. Finally, a Dual-sided LRM is proposed to seamlessly stitch together the front and back 3D features, akin to a tailor sewing together the front and back of a garment. The Dual-sided LRM rectifies imperfect consistencies between the front and back views, enhancing editing capabilities and reducing memory burdens while seamlessly integrating them into a unified 3D representation with the LoRA Triplane Transformer. Experimental results demonstrate Tailor3D's effectiveness across various 3D generation and editing tasks, including 3D generative fill and style transfer. It provides a user-friendly, efficient solution for editing 3D assets, with each editing step taking only seconds to complete.
SV4D: Dynamic 3D Content Generation with Multi-Frame and Multi-View Consistency
We present Stable Video 4D (SV4D), a latent video diffusion model for multi-frame and multi-view consistent dynamic 3D content generation. Unlike previous methods that rely on separately trained generative models for video generation and novel view synthesis, we design a unified diffusion model to generate novel view videos of dynamic 3D objects. Specifically, given a monocular reference video, SV4D generates novel views for each video frame that are temporally consistent. We then use the generated novel view videos to optimize an implicit 4D representation (dynamic NeRF) efficiently, without the need for cumbersome SDS-based optimization used in most prior works. To train our unified novel view video generation model, we curated a dynamic 3D object dataset from the existing Objaverse dataset. Extensive experimental results on multiple datasets and user studies demonstrate SV4D's state-of-the-art performance on novel-view video synthesis as well as 4D generation compared to prior works.
3D Scene Generation: A Survey
3D scene generation seeks to synthesize spatially structured, semantically meaningful, and photorealistic environments for applications such as immersive media, robotics, autonomous driving, and embodied AI. Early methods based on procedural rules offered scalability but limited diversity. Recent advances in deep generative models (e.g., GANs, diffusion models) and 3D representations (e.g., NeRF, 3D Gaussians) have enabled the learning of real-world scene distributions, improving fidelity, diversity, and view consistency. Recent advances like diffusion models bridge 3D scene synthesis and photorealism by reframing generation as image or video synthesis problems. This survey provides a systematic overview of state-of-the-art approaches, organizing them into four paradigms: procedural generation, neural 3D-based generation, image-based generation, and video-based generation. We analyze their technical foundations, trade-offs, and representative results, and review commonly used datasets, evaluation protocols, and downstream applications. We conclude by discussing key challenges in generation capacity, 3D representation, data and annotations, and evaluation, and outline promising directions including higher fidelity, physics-aware and interactive generation, and unified perception-generation models. This review organizes recent advances in 3D scene generation and highlights promising directions at the intersection of generative AI, 3D vision, and embodied intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/hzxie/Awesome-3D-Scene-Generation.
3D-aware Image Generation using 2D Diffusion Models
In this paper, we introduce a novel 3D-aware image generation method that leverages 2D diffusion models. We formulate the 3D-aware image generation task as multiview 2D image set generation, and further to a sequential unconditional-conditional multiview image generation process. This allows us to utilize 2D diffusion models to boost the generative modeling power of the method. Additionally, we incorporate depth information from monocular depth estimators to construct the training data for the conditional diffusion model using only still images. We train our method on a large-scale dataset, i.e., ImageNet, which is not addressed by previous methods. It produces high-quality images that significantly outperform prior methods. Furthermore, our approach showcases its capability to generate instances with large view angles, even though the training images are diverse and unaligned, gathered from "in-the-wild" real-world environments.
3DGStream: On-the-Fly Training of 3D Gaussians for Efficient Streaming of Photo-Realistic Free-Viewpoint Videos
Constructing photo-realistic Free-Viewpoint Videos (FVVs) of dynamic scenes from multi-view videos remains a challenging endeavor. Despite the remarkable advancements achieved by current neural rendering techniques, these methods generally require complete video sequences for offline training and are not capable of real-time rendering. To address these constraints, we introduce 3DGStream, a method designed for efficient FVV streaming of real-world dynamic scenes. Our method achieves fast on-the-fly per-frame reconstruction within 12 seconds and real-time rendering at 200 FPS. Specifically, we utilize 3D Gaussians (3DGs) to represent the scene. Instead of the na\"ive approach of directly optimizing 3DGs per-frame, we employ a compact Neural Transformation Cache (NTC) to model the translations and rotations of 3DGs, markedly reducing the training time and storage required for each FVV frame. Furthermore, we propose an adaptive 3DG addition strategy to handle emerging objects in dynamic scenes. Experiments demonstrate that 3DGStream achieves competitive performance in terms of rendering speed, image quality, training time, and model storage when compared with state-of-the-art methods.
GaussianDreamer: Fast Generation from Text to 3D Gaussian Splatting with Point Cloud Priors
In recent times, the generation of 3D assets from text prompts has shown impressive results. Both 2D and 3D diffusion models can generate decent 3D objects based on prompts. 3D diffusion models have good 3D consistency, but their quality and generalization are limited as trainable 3D data is expensive and hard to obtain. 2D diffusion models enjoy strong abilities of generalization and fine generation, but the 3D consistency is hard to guarantee. This paper attempts to bridge the power from the two types of diffusion models via the recent explicit and efficient 3D Gaussian splatting representation. A fast 3D generation framework, named as \name, is proposed, where the 3D diffusion model provides point cloud priors for initialization and the 2D diffusion model enriches the geometry and appearance. Operations of noisy point growing and color perturbation are introduced to enhance the initialized Gaussians. Our \name can generate a high-quality 3D instance within 25 minutes on one GPU, much faster than previous methods, while the generated instances can be directly rendered in real time. Demos and code are available at https://taoranyi.com/gaussiandreamer/.
SViM3D: Stable Video Material Diffusion for Single Image 3D Generation
We present Stable Video Materials 3D (SViM3D), a framework to predict multi-view consistent physically based rendering (PBR) materials, given a single image. Recently, video diffusion models have been successfully used to reconstruct 3D objects from a single image efficiently. However, reflectance is still represented by simple material models or needs to be estimated in additional steps to enable relighting and controlled appearance edits. We extend a latent video diffusion model to output spatially varying PBR parameters and surface normals jointly with each generated view based on explicit camera control. This unique setup allows for relighting and generating a 3D asset using our model as neural prior. We introduce various mechanisms to this pipeline that improve quality in this ill-posed setting. We show state-of-the-art relighting and novel view synthesis performance on multiple object-centric datasets. Our method generalizes to diverse inputs, enabling the generation of relightable 3D assets useful in AR/VR, movies, games and other visual media.
Large-Vocabulary 3D Diffusion Model with Transformer
Creating diverse and high-quality 3D assets with an automatic generative model is highly desirable. Despite extensive efforts on 3D generation, most existing works focus on the generation of a single category or a few categories. In this paper, we introduce a diffusion-based feed-forward framework for synthesizing massive categories of real-world 3D objects with a single generative model. Notably, there are three major challenges for this large-vocabulary 3D generation: a) the need for expressive yet efficient 3D representation; b) large diversity in geometry and texture across categories; c) complexity in the appearances of real-world objects. To this end, we propose a novel triplane-based 3D-aware Diffusion model with TransFormer, DiffTF, for handling challenges via three aspects. 1) Considering efficiency and robustness, we adopt a revised triplane representation and improve the fitting speed and accuracy. 2) To handle the drastic variations in geometry and texture, we regard the features of all 3D objects as a combination of generalized 3D knowledge and specialized 3D features. To extract generalized 3D knowledge from diverse categories, we propose a novel 3D-aware transformer with shared cross-plane attention. It learns the cross-plane relations across different planes and aggregates the generalized 3D knowledge with specialized 3D features. 3) In addition, we devise the 3D-aware encoder/decoder to enhance the generalized 3D knowledge in the encoded triplanes for handling categories with complex appearances. Extensive experiments on ShapeNet and OmniObject3D (over 200 diverse real-world categories) convincingly demonstrate that a single DiffTF model achieves state-of-the-art large-vocabulary 3D object generation performance with large diversity, rich semantics, and high quality.
LL3M: Large Language 3D Modelers
We present LL3M, a multi-agent system that leverages pretrained large language models (LLMs) to generate 3D assets by writing interpretable Python code in Blender. We break away from the typical generative approach that learns from a collection of 3D data. Instead, we reformulate shape generation as a code-writing task, enabling greater modularity, editability, and integration with artist workflows. Given a text prompt, LL3M coordinates a team of specialized LLM agents to plan, retrieve, write, debug, and refine Blender scripts that generate and edit geometry and appearance. The generated code works as a high-level, interpretable, human-readable, well-documented representation of scenes and objects, making full use of sophisticated Blender constructs (e.g. B-meshes, geometry modifiers, shader nodes) for diverse, unconstrained shapes, materials, and scenes. This code presents many avenues for further agent and human editing and experimentation via code tweaks or procedural parameters. This medium naturally enables a co-creative loop in our system: agents can automatically self-critique using code and visuals, while iterative user instructions provide an intuitive way to refine assets. A shared code context across agents enables awareness of previous attempts, and a retrieval-augmented generation knowledge base built from Blender API documentation, BlenderRAG, equips agents with examples, types, and functions empowering advanced modeling operations and code correctness. We demonstrate the effectiveness of LL3M across diverse shape categories, style and material edits, and user-driven refinements. Our experiments showcase the power of code as a generative and interpretable medium for 3D asset creation. Our project page is at https://threedle.github.io/ll3m.
RoDyGS: Robust Dynamic Gaussian Splatting for Casual Videos
Dynamic view synthesis (DVS) has advanced remarkably in recent years, achieving high-fidelity rendering while reducing computational costs. Despite the progress, optimizing dynamic neural fields from casual videos remains challenging, as these videos do not provide direct 3D information, such as camera trajectories or the underlying scene geometry. In this work, we present RoDyGS, an optimization pipeline for dynamic Gaussian Splatting from casual videos. It effectively learns motion and underlying geometry of scenes by separating dynamic and static primitives, and ensures that the learned motion and geometry are physically plausible by incorporating motion and geometric regularization terms. We also introduce a comprehensive benchmark, Kubric-MRig, that provides extensive camera and object motion along with simultaneous multi-view captures, features that are absent in previous benchmarks. Experimental results demonstrate that the proposed method significantly outperforms previous pose-free dynamic neural fields and achieves competitive rendering quality compared to existing pose-free static neural fields. The code and data are publicly available at https://rodygs.github.io/.
VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models
This paper presents a novel paradigm for building scalable 3D generative models utilizing pre-trained video diffusion models. The primary obstacle in developing foundation 3D generative models is the limited availability of 3D data. Unlike images, texts, or videos, 3D data are not readily accessible and are difficult to acquire. This results in a significant disparity in scale compared to the vast quantities of other types of data. To address this issue, we propose using a video diffusion model, trained with extensive volumes of text, images, and videos, as a knowledge source for 3D data. By unlocking its multi-view generative capabilities through fine-tuning, we generate a large-scale synthetic multi-view dataset to train a feed-forward 3D generative model. The proposed model, VFusion3D, trained on nearly 3M synthetic multi-view data, can generate a 3D asset from a single image in seconds and achieves superior performance when compared to current SOTA feed-forward 3D generative models, with users preferring our results over 70% of the time.
Seed3D 1.0: From Images to High-Fidelity Simulation-Ready 3D Assets
Developing embodied AI agents requires scalable training environments that balance content diversity with physics accuracy. World simulators provide such environments but face distinct limitations: video-based methods generate diverse content but lack real-time physics feedback for interactive learning, while physics-based engines provide accurate dynamics but face scalability limitations from costly manual asset creation. We present Seed3D 1.0, a foundation model that generates simulation-ready 3D assets from single images, addressing the scalability challenge while maintaining physics rigor. Unlike existing 3D generation models, our system produces assets with accurate geometry, well-aligned textures, and realistic physically-based materials. These assets can be directly integrated into physics engines with minimal configuration, enabling deployment in robotic manipulation and simulation training. Beyond individual objects, the system scales to complete scene generation through assembling objects into coherent environments. By enabling scalable simulation-ready content creation, Seed3D 1.0 provides a foundation for advancing physics-based world simulators. Seed3D 1.0 is now available on https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?modelId=doubao-seed3d-1-0-250928&tab=Gen3D
Towards Physical Understanding in Video Generation: A 3D Point Regularization Approach
We present a novel video generation framework that integrates 3-dimensional geometry and dynamic awareness. To achieve this, we augment 2D videos with 3D point trajectories and align them in pixel space. The resulting 3D-aware video dataset, PointVid, is then used to fine-tune a latent diffusion model, enabling it to track 2D objects with 3D Cartesian coordinates. Building on this, we regularize the shape and motion of objects in the video to eliminate undesired artifacts, \eg, nonphysical deformation. Consequently, we enhance the quality of generated RGB videos and alleviate common issues like object morphing, which are prevalent in current video models due to a lack of shape awareness. With our 3D augmentation and regularization, our model is capable of handling contact-rich scenarios such as task-oriented videos. These videos involve complex interactions of solids, where 3D information is essential for perceiving deformation and contact. Furthermore, our model improves the overall quality of video generation by promoting the 3D consistency of moving objects and reducing abrupt changes in shape and motion.
TRELLISWorld: Training-Free World Generation from Object Generators
Text-driven 3D scene generation holds promise for a wide range of applications, from virtual prototyping to AR/VR and simulation. However, existing methods are often constrained to single-object generation, require domain-specific training, or lack support for full 360-degree viewability. In this work, we present a training-free approach to 3D scene synthesis by repurposing general-purpose text-to-3D object diffusion models as modular tile generators. We reformulate scene generation as a multi-tile denoising problem, where overlapping 3D regions are independently generated and seamlessly blended via weighted averaging. This enables scalable synthesis of large, coherent scenes while preserving local semantic control. Our method eliminates the need for scene-level datasets or retraining, relies on minimal heuristics, and inherits the generalization capabilities of object-level priors. We demonstrate that our approach supports diverse scene layouts, efficient generation, and flexible editing, establishing a simple yet powerful foundation for general-purpose, language-driven 3D scene construction.
SVG360: Multi-View SVG Generation with Geometric and Color Consistency from a Single SVG
Scalable Vector Graphics (SVGs) are central to modern design workflows, offering scaling without distortion and precise editability. However, for single object SVGs, generating multi-view consistent SVGs from a single-view input remains underexplored. We present a three stage framework that produces multi-view SVGs with geometric and color consistency from a single SVG input. First, the rasterized input is lifted to a 3D representation and rendered under target camera poses, producing multi-view images of the object. Next, we extend the temporal memory mechanism of Segment Anything 2 (SAM2) to the spatial domain, constructing a spatial memory bank that establishes part level correspondences across neighboring views, yielding cleaner and more consistent vector paths and color assignments without retraining. Finally, during the raster to vector conversion, we perform path consolidation and structural optimization to reduce redundancy while preserving boundaries and semantics. The resulting SVGs exhibit strong geometric and color consistency across views, significantly reduce redundant paths, and retain fine structural details. This work bridges generative modeling and structured vector representation, providing a scalable route to single input, object level multi-view SVG generation and supporting applications such as asset creation and semantic vector editing.
4DNeX: Feed-Forward 4D Generative Modeling Made Easy
We present 4DNeX, the first feed-forward framework for generating 4D (i.e., dynamic 3D) scene representations from a single image. In contrast to existing methods that rely on computationally intensive optimization or require multi-frame video inputs, 4DNeX enables efficient, end-to-end image-to-4D generation by fine-tuning a pretrained video diffusion model. Specifically, 1) to alleviate the scarcity of 4D data, we construct 4DNeX-10M, a large-scale dataset with high-quality 4D annotations generated using advanced reconstruction approaches. 2) we introduce a unified 6D video representation that jointly models RGB and XYZ sequences, facilitating structured learning of both appearance and geometry. 3) we propose a set of simple yet effective adaptation strategies to repurpose pretrained video diffusion models for 4D modeling. 4DNeX produces high-quality dynamic point clouds that enable novel-view video synthesis. Extensive experiments demonstrate that 4DNeX outperforms existing 4D generation methods in efficiency and generalizability, offering a scalable solution for image-to-4D modeling and laying the foundation for generative 4D world models that simulate dynamic scene evolution.
One-2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View Generation and 3D Diffusion
Recent advancements in open-world 3D object generation have been remarkable, with image-to-3D methods offering superior fine-grained control over their text-to-3D counterparts. However, most existing models fall short in simultaneously providing rapid generation speeds and high fidelity to input images - two features essential for practical applications. In this paper, we present One-2-3-45++, an innovative method that transforms a single image into a detailed 3D textured mesh in approximately one minute. Our approach aims to fully harness the extensive knowledge embedded in 2D diffusion models and priors from valuable yet limited 3D data. This is achieved by initially finetuning a 2D diffusion model for consistent multi-view image generation, followed by elevating these images to 3D with the aid of multi-view conditioned 3D native diffusion models. Extensive experimental evaluations demonstrate that our method can produce high-quality, diverse 3D assets that closely mirror the original input image. Our project webpage: https://sudo-ai-3d.github.io/One2345plus_page.
En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D Synthetic Data
We present En3D, an enhanced generative scheme for sculpting high-quality 3D human avatars. Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalanced viewing angles and imprecise pose priors, our approach aims to develop a zero-shot 3D generative scheme capable of producing visually realistic, geometrically accurate and content-wise diverse 3D humans without relying on pre-existing 3D or 2D assets. To address this challenge, we introduce a meticulously crafted workflow that implements accurate physical modeling to learn the enhanced 3D generative model from synthetic 2D data. During inference, we integrate optimization modules to bridge the gap between realistic appearances and coarse 3D shapes. Specifically, En3D comprises three modules: a 3D generator that accurately models generalizable 3D humans with realistic appearance from synthesized balanced, diverse, and structured human images; a geometry sculptor that enhances shape quality using multi-view normal constraints for intricate human anatomy; and a texturing module that disentangles explicit texture maps with fidelity and editability, leveraging semantical UV partitioning and a differentiable rasterizer. Experimental results show that our approach significantly outperforms prior works in terms of image quality, geometry accuracy and content diversity. We also showcase the applicability of our generated avatars for animation and editing, as well as the scalability of our approach for content-style free adaptation.
Compress3D: a Compressed Latent Space for 3D Generation from a Single Image
3D generation has witnessed significant advancements, yet efficiently producing high-quality 3D assets from a single image remains challenging. In this paper, we present a triplane autoencoder, which encodes 3D models into a compact triplane latent space to effectively compress both the 3D geometry and texture information. Within the autoencoder framework, we introduce a 3D-aware cross-attention mechanism, which utilizes low-resolution latent representations to query features from a high-resolution 3D feature volume, thereby enhancing the representation capacity of the latent space. Subsequently, we train a diffusion model on this refined latent space. In contrast to solely relying on image embedding for 3D generation, our proposed method advocates for the simultaneous utilization of both image embedding and shape embedding as conditions. Specifically, the shape embedding is estimated via a diffusion prior model conditioned on the image embedding. Through comprehensive experiments, we demonstrate that our method outperforms state-of-the-art algorithms, achieving superior performance while requiring less training data and time. Our approach enables the generation of high-quality 3D assets in merely 7 seconds on a single A100 GPU.
3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation
Text-driven 3D scene generation techniques have made rapid progress in recent years. Their success is mainly attributed to using existing generative models to iteratively perform image warping and inpainting to generate 3D scenes. However, these methods heavily rely on the outputs of existing models, leading to error accumulation in geometry and appearance that prevent the models from being used in various scenarios (e.g., outdoor and unreal scenarios). To address this limitation, we generatively refine the newly generated local views by querying and aggregating global 3D information, and then progressively generate the 3D scene. Specifically, we employ a tri-plane features-based NeRF as a unified representation of the 3D scene to constrain global 3D consistency, and propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior from 2D diffusion model as well as the global 3D information of the current scene. Our extensive experiments demonstrate that, in comparison to previous methods, our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
iControl3D: An Interactive System for Controllable 3D Scene Generation
3D content creation has long been a complex and time-consuming process, often requiring specialized skills and resources. While recent advancements have allowed for text-guided 3D object and scene generation, they still fall short of providing sufficient control over the generation process, leading to a gap between the user's creative vision and the generated results. In this paper, we present iControl3D, a novel interactive system that empowers users to generate and render customizable 3D scenes with precise control. To this end, a 3D creator interface has been developed to provide users with fine-grained control over the creation process. Technically, we leverage 3D meshes as an intermediary proxy to iteratively merge individual 2D diffusion-generated images into a cohesive and unified 3D scene representation. To ensure seamless integration of 3D meshes, we propose to perform boundary-aware depth alignment before fusing the newly generated mesh with the existing one in 3D space. Additionally, to effectively manage depth discrepancies between remote content and foreground, we propose to model remote content separately with an environment map instead of 3D meshes. Finally, our neural rendering interface enables users to build a radiance field of their scene online and navigate the entire scene. Extensive experiments have been conducted to demonstrate the effectiveness of our system. The code will be made available at https://github.com/xingyi-li/iControl3D.
DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance
Emerging Metaverse applications demand accessible, accurate, and easy-to-use tools for 3D digital human creations in order to depict different cultures and societies as if in the physical world. Recent large-scale vision-language advances pave the way to for novices to conveniently customize 3D content. However, the generated CG-friendly assets still cannot represent the desired facial traits for human characteristics. In this paper, we present DreamFace, a progressive scheme to generate personalized 3D faces under text guidance. It enables layman users to naturally customize 3D facial assets that are compatible with CG pipelines, with desired shapes, textures, and fine-grained animation capabilities. From a text input to describe the facial traits, we first introduce a coarse-to-fine scheme to generate the neutral facial geometry with a unified topology. We employ a selection strategy in the CLIP embedding space, and subsequently optimize both the details displacements and normals using Score Distillation Sampling from generic Latent Diffusion Model. Then, for neutral appearance generation, we introduce a dual-path mechanism, which combines the generic LDM with a novel texture LDM to ensure both the diversity and textural specification in the UV space. We also employ a two-stage optimization to perform SDS in both the latent and image spaces to significantly provides compact priors for fine-grained synthesis. Our generated neutral assets naturally support blendshapes-based facial animations. We further improve the animation ability with personalized deformation characteristics by learning the universal expression prior using the cross-identity hypernetwork. Notably, DreamFace can generate of realistic 3D facial assets with physically-based rendering quality and rich animation ability from video footage, even for fashion icons or exotic characters in cartoons and fiction movies.
ET3D: Efficient Text-to-3D Generation via Multi-View Distillation
Recent breakthroughs in text-to-image generation has shown encouraging results via large generative models. Due to the scarcity of 3D assets, it is hardly to transfer the success of text-to-image generation to that of text-to-3D generation. Existing text-to-3D generation methods usually adopt the paradigm of DreamFusion, which conducts per-asset optimization by distilling a pretrained text-to-image diffusion model. The generation speed usually ranges from several minutes to tens of minutes per 3D asset, which degrades the user experience and also imposes a burden to the service providers due to the high computational budget. In this work, we present an efficient text-to-3D generation method, which requires only around 8 ms to generate a 3D asset given the text prompt on a consumer graphic card. The main insight is that we exploit the images generated by a large pre-trained text-to-image diffusion model, to supervise the training of a text conditioned 3D generative adversarial network. Once the network is trained, we are able to efficiently generate a 3D asset via a single forward pass. Our method requires no 3D training data and provides an alternative approach for efficient text-to-3D generation by distilling pre-trained image diffusion models.
