new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Finetuning-Free Personalization of Text to Image Generation via Hypernetworks

Personalizing text-to-image diffusion models has traditionally relied on subject-specific fine-tuning approaches such as DreamBooth~ruiz2023dreambooth, which are computationally expensive and slow at inference. Recent adapter- and encoder-based methods attempt to reduce this overhead but still depend on additional fine-tuning or large backbone models for satisfactory results. In this work, we revisit an orthogonal direction: fine-tuning-free personalization via Hypernetworks that predict LoRA-adapted weights directly from subject images. Prior hypernetwork-based approaches, however, suffer from costly data generation or unstable attempts to mimic base model optimization trajectories. We address these limitations with an end-to-end training objective, stabilized by a simple output regularization, yielding reliable and effective hypernetworks. Our method removes the need for per-subject optimization at test time while preserving both subject fidelity and prompt alignment. To further enhance compositional generalization at inference time, we introduce Hybrid-Model Classifier-Free Guidance (HM-CFG), which combines the compositional strengths of the base diffusion model with the subject fidelity of personalized models during sampling. Extensive experiments on CelebA-HQ, AFHQ-v2, and DreamBench demonstrate that our approach achieves strong personalization performance and highlights the promise of hypernetworks as a scalable and effective direction for open-category personalization.

  • 4 authors
·
Nov 4, 2025

ClassDiffusion: More Aligned Personalization Tuning with Explicit Class Guidance

Recent text-to-image customization works have been proven successful in generating images of given concepts by fine-tuning the diffusion models on a few examples. However, these methods tend to overfit the concepts, resulting in failure to create the concept under multiple conditions (e.g. headphone is missing when generating a <sks> dog wearing a headphone'). Interestingly, we notice that the base model before fine-tuning exhibits the capability to compose the base concept with other elements (e.g. a dog wearing a headphone) implying that the compositional ability only disappears after personalization tuning. Inspired by this observation, we present ClassDiffusion, a simple technique that leverages a semantic preservation loss to explicitly regulate the concept space when learning the new concept. Despite its simplicity, this helps avoid semantic drift when fine-tuning on the target concepts. Extensive qualitative and quantitative experiments demonstrate that the use of semantic preservation loss effectively improves the compositional abilities of the fine-tune models. In response to the ineffective evaluation of CLIP-T metrics, we introduce BLIP2-T metric, a more equitable and effective evaluation metric for this particular domain. We also provide in-depth empirical study and theoretical analysis to better understand the role of the proposed loss. Lastly, we also extend our ClassDiffusion to personalized video generation, demonstrating its flexibility.

  • 6 authors
·
May 27, 2024