Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLandslide mapping from Sentinel-2 imagery through change detection
Landslides are one of the most critical and destructive geohazards. Widespread development of human activities and settlements combined with the effects of climate change on weather are resulting in a high increase in the frequency and destructive power of landslides, making them a major threat to human life and the economy. In this paper, we explore methodologies to map newly-occurred landslides using Sentinel-2 imagery automatically. All approaches presented are framed as a bi-temporal change detection problem, requiring only a pair of Sentinel-2 images, taken respectively before and after a landslide-triggering event. Furthermore, we introduce a novel deep learning architecture for fusing Sentinel-2 bi-temporal image pairs with Digital Elevation Model (DEM) data, showcasing its promising performances w.r.t. other change detection models in the literature. As a parallel task, we address limitations in existing datasets by creating a novel geodatabase, which includes manually validated open-access landslide inventories over heterogeneous ecoregions of the world. We release both code and dataset with an open-source license.
Be the Change You Want to See: Revisiting Remote Sensing Change Detection Practices
Remote sensing change detection aims to localize semantic changes between images of the same location captured at different times. In the past few years, newer methods have attributed enhanced performance to the additions of new and complex components to existing architectures. Most fail to measure the performance contribution of fundamental design choices such as backbone selection, pre-training strategies, and training configurations. We claim that such fundamental design choices often improve performance even more significantly than the addition of new architectural components. Due to that, we systematically revisit the design space of change detection models and analyse the full potential of a well-optimised baseline. We identify a set of fundamental design choices that benefit both new and existing architectures. Leveraging this insight, we demonstrate that when carefully designed, even an architecturally simple model can match or surpass state-of-the-art performance on six challenging change detection datasets. Our best practices generalise beyond our architecture and also offer performance improvements when applied to related methods, indicating that the space of fundamental design choices has been underexplored. Our guidelines and architecture provide a strong foundation for future methods, emphasizing that optimizing core components is just as important as architectural novelty in advancing change detection performance. Code: https://github.com/blaz-r/BTC-change-detection
TINYCD: A (Not So) Deep Learning Model For Change Detection
In this paper, we present a lightweight and effective change detection model, called TinyCD. This model has been designed to be faster and smaller than current state-of-the-art change detection models due to industrial needs. Despite being from 13 to 140 times smaller than the compared change detection models, and exposing at least a third of the computational complexity, our model outperforms the current state-of-the-art models by at least 1% on both F1 score and IoU on the LEVIR-CD dataset, and more than 8% on the WHU-CD dataset. To reach these results, TinyCD uses a Siamese U-Net architecture exploiting low-level features in a globally temporal and locally spatial way. In addition, it adopts a new strategy to mix features in the space-time domain both to merge the embeddings obtained from the Siamese backbones, and, coupled with an MLP block, it forms a novel space-semantic attention mechanism, the Mix and Attention Mask Block (MAMB). Source code, models and results are available here: https://github.com/AndreaCodegoni/Tiny_model_4_CD
Change State Space Models for Remote Sensing Change Detection
Despite their frequent use for change detection, both ConvNets and Vision transformers (ViT) exhibit well-known limitations, namely the former struggle to model long-range dependencies while the latter are computationally inefficient, rendering them challenging to train on large-scale datasets. Vision Mamba, an architecture based on State Space Models has emerged as an alternative addressing the aforementioned deficiencies and has been already applied to remote sensing change detection, though mostly as a feature extracting backbone. In this article the Change State Space Model is introduced, that has been specifically designed for change detection by focusing on the relevant changes between bi-temporal images, effectively filtering out irrelevant information. By concentrating solely on the changed features, the number of network parameters is reduced, enhancing significantly computational efficiency while maintaining high detection performance and robustness against input degradation. The proposed model has been evaluated via three benchmark datasets, where it outperformed ConvNets, ViTs, and Mamba-based counterparts at a fraction of their computational complexity. The implementation will be made available at https://github.com/Elman295/CSSM upon acceptance.
DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors for Change Detection
Remote sensing change detection is crucial for understanding the dynamics of our planet's surface, facilitating the monitoring of environmental changes, evaluating human impact, predicting future trends, and supporting decision-making. In this work, we introduce a novel approach for change detection that can leverage off-the-shelf, unlabeled remote sensing images in the training process by pre-training a Denoising Diffusion Probabilistic Model (DDPM) - a class of generative models used in image synthesis. DDPMs learn the training data distribution by gradually converting training images into a Gaussian distribution using a Markov chain. During inference (i.e., sampling), they can generate a diverse set of samples closer to the training distribution, starting from Gaussian noise, achieving state-of-the-art image synthesis results. However, in this work, our focus is not on image synthesis but on utilizing it as a pre-trained feature extractor for the downstream application of change detection. Specifically, we fine-tune a lightweight change classifier utilizing the feature representations produced by the pre-trained DDPM alongside change labels. Experiments conducted on the LEVIR-CD, WHU-CD, DSIFN-CD, and CDD datasets demonstrate that the proposed DDPM-CD method significantly outperforms the existing state-of-the-art change detection methods in terms of F1 score, IoU, and overall accuracy, highlighting the pivotal role of pre-trained DDPM as a feature extractor for downstream applications. We have made both the code and pre-trained models available at https://github.com/wgcban/ddpm-cd
Robust Scene Change Detection Using Visual Foundation Models and Cross-Attention Mechanisms
We present a novel method for scene change detection that leverages the robust feature extraction capabilities of a visual foundational model, DINOv2, and integrates full-image cross-attention to address key challenges such as varying lighting, seasonal variations, and viewpoint differences. In order to effectively learn correspondences and mis-correspondences between an image pair for the change detection task, we propose to a) ``freeze'' the backbone in order to retain the generality of dense foundation features, and b) employ ``full-image'' cross-attention to better tackle the viewpoint variations between the image pair. We evaluate our approach on two benchmark datasets, VL-CMU-CD and PSCD, along with their viewpoint-varied versions. Our experiments demonstrate significant improvements in F1-score, particularly in scenarios involving geometric changes between image pairs. The results indicate our method's superior generalization capabilities over existing state-of-the-art approaches, showing robustness against photometric and geometric variations as well as better overall generalization when fine-tuned to adapt to new environments. Detailed ablation studies further validate the contributions of each component in our architecture. Our source code is available at: https://github.com/ChadLin9596/Robust-Scene-Change-Detection.
PeftCD: Leveraging Vision Foundation Models with Parameter-Efficient Fine-Tuning for Remote Sensing Change Detection
To tackle the prevalence of pseudo changes, the scarcity of labeled samples, and the difficulty of cross-domain generalization in multi-temporal and multi-source remote sensing imagery, we propose PeftCD, a change detection framework built upon Vision Foundation Models (VFMs) with Parameter-Efficient Fine-Tuning (PEFT). At its core, PeftCD employs a weight-sharing Siamese encoder derived from a VFM, into which LoRA and Adapter modules are seamlessly integrated. This design enables highly efficient task adaptation by training only a minimal set of additional parameters. To fully unlock the potential of VFMs, we investigate two leading backbones: the Segment Anything Model v2 (SAM2), renowned for its strong segmentation priors, and DINOv3, a state-of-the-art self-supervised representation learner. The framework is complemented by a deliberately lightweight decoder, ensuring the focus remains on the powerful feature representations from the backbones. Extensive experiments demonstrate that PeftCD achieves state-of-the-art performance across multiple public datasets, including SYSU-CD (IoU 73.81%), WHUCD (92.05%), MSRSCD (64.07%), MLCD (76.89%), CDD (97.01%), S2Looking (52.25%) and LEVIR-CD (85.62%), with notably precise boundary delineation and strong suppression of pseudo-changes. In summary, PeftCD presents an optimal balance of accuracy, efficiency, and generalization. It offers a powerful and scalable paradigm for adapting large-scale VFMs to real-world remote sensing change detection applications. The code and pretrained models will be released at https://github.com/dyzy41/PeftCD.
ViewDelta: Text-Prompted Change Detection in Unaligned Images
Detecting changes between images is a fundamental problem in computer vision with broad applications in situational awareness, infrastructure assessment, environment monitoring, and industrial automation. Existing supervised models are typically limited to detecting specific types of changes, necessitating retraining for new tasks. To address these limitations with a single approach, we propose a novel change detection method that is the first to utilize unaligned images and textual prompts to output a binary segmentation of changes relevant to user-provided text. Our architecture not only enables flexible detection across diverse change detection use cases, but also yields state-of-the art performance on established benchmarks. Additionally, we release an accompanying dataset comprising of 100,311 pairs of images with text prompts and the corresponding change detection labels. We demonstrate the effectiveness of our method both quantitatively and qualitatively on datasets with a wide variety of viewpoints in indoor, outdoor, street level, synthetic, and satellite images.
Habitat and Land Cover Change Detection in Alpine Protected Areas: A Comparison of AI Architectures
Rapid climate change and other disturbances in alpine ecosystems demand frequent habitat monitoring, yet manual mapping remains prohibitively expensive for the required temporal resolution. We employ deep learning for change detection using long-term alpine habitat data from Gesaeuse National Park, Austria, addressing a major gap in applying geospatial foundation models (GFMs) to complex natural environments with fuzzy class boundaries and highly imbalanced classes. We compare two paradigms: post-classification change detection (CD) versus direct CD. For post-classification CD, we evaluate GFMs Prithvi-EO-2.0 and Clay v1.0 against U-Net CNNs; for direct CD, we test the transformer ChangeViT against U-Net baselines. Using high-resolution multimodal data (RGB, NIR, LiDAR, terrain attributes) covering 4,480 documented changes over 15.3 km2, results show Clay v1.0 achieves 51% overall accuracy versus U-Net's 41% for multi-class habitat change, while both reach 67% for binary change detection. Direct CD yields superior IoU (0.53 vs 0.35) for binary but only 28% accuracy for multi-class detection. Cross-temporal evaluation reveals GFM robustness, with Clay maintaining 33% accuracy on 2020 data versus U-Net's 23%. Integrating LiDAR improves semantic segmentation from 30% to 50% accuracy. Although overall accuracies are lower than in more homogeneous landscapes, they reflect realistic performance for complex alpine habitats. Future work will integrate object-based post-processing and physical constraints to enhance applicability.
Mamba-FCS: Joint Spatio- Frequency Feature Fusion, Change-Guided Attention, and SeK Loss for Enhanced Semantic Change Detection in Remote Sensing
Semantic Change Detection (SCD) from remote sensing imagery requires models balancing extensive spatial context, computational efficiency, and sensitivity to class-imbalanced land-cover transitions. While Convolutional Neural Networks excel at local feature extraction but lack global context, Transformers provide global modeling at high computational costs. Recent Mamba architectures based on state-space models offer compelling solutions through linear complexity and efficient long-range modeling. In this study, we introduce Mamba-FCS, a SCD framework built upon Visual State Space Model backbone incorporating, a Joint Spatio-Frequency Fusion block incorporating log-amplitude frequency domain features to enhance edge clarity and suppress illumination artifacts, a Change-Guided Attention (CGA) module that explicitly links the naturally intertwined BCD and SCD tasks, and a Separated Kappa (SeK) loss tailored for class-imbalanced performance optimization. Extensive evaluation on SECOND and Landsat-SCD datasets shows that Mamba-FCS achieves state-of-the-art metrics, 88.62% Overall Accuracy, 65.78% F_scd, and 25.50% SeK on SECOND, 96.25% Overall Accuracy, 89.27% F_scd, and 60.26% SeK on Landsat-SCD. Ablation analyses confirm distinct contributions of each novel component, with qualitative assessments highlighting significant improvements in SCD. Our results underline the substantial potential of Mamba architectures, enhanced by proposed techniques, setting a new benchmark for effective and scalable semantic change detection in remote sensing applications. The complete source code, configuration files, and pre-trained models will be publicly available upon publication.
Referring Change Detection in Remote Sensing Imagery
Change detection in remote sensing imagery is essential for applications such as urban planning, environmental monitoring, and disaster management. Traditional change detection methods typically identify all changes between two temporal images without distinguishing the types of transitions, which can lead to results that may not align with specific user needs. Although semantic change detection methods have attempted to address this by categorizing changes into predefined classes, these methods rely on rigid class definitions and fixed model architectures, making it difficult to mix datasets with different label sets or reuse models across tasks, as the output channels are tightly coupled with the number and type of semantic classes. To overcome these limitations, we introduce Referring Change Detection (RCD), which leverages natural language prompts to detect specific classes of changes in remote sensing images. By integrating language understanding with visual analysis, our approach allows users to specify the exact type of change they are interested in. However, training models for RCD is challenging due to the limited availability of annotated data and severe class imbalance in existing datasets. To address this, we propose a two-stage framework consisting of (I) RCDNet, a cross-modal fusion network designed for referring change detection, and (II) RCDGen, a diffusion-based synthetic data generation pipeline that produces realistic post-change images and change maps for a specified category using only pre-change image, without relying on semantic segmentation masks and thereby significantly lowering the barrier to scalable data creation. Experiments across multiple datasets show that our framework enables scalable and targeted change detection. Project website is here: https://yilmazkorkmaz1.github.io/RCD.
Rethinking Remote Sensing Change Detection With A Mask View
Remote sensing change detection aims to compare two or more images recorded for the same area but taken at different time stamps to quantitatively and qualitatively assess changes in geographical entities and environmental factors. Mainstream models usually built on pixel-by-pixel change detection paradigms, which cannot tolerate the diversity of changes due to complex scenes and variation in imaging conditions. To address this shortcoming, this paper rethinks the change detection with the mask view, and further proposes the corresponding: 1) meta-architecture CDMask and 2) instance network CDMaskFormer. Components of CDMask include Siamese backbone, change extractor, pixel decoder, transformer decoder and normalized detector, which ensures the proper functioning of the mask detection paradigm. Since the change query can be adaptively updated based on the bi-temporal feature content, the proposed CDMask can adapt to different latent data distributions, thus accurately identifying regions of interest changes in complex scenarios. Consequently, we further propose the instance network CDMaskFormer customized for the change detection task, which includes: (i) a Spatial-temporal convolutional attention-based instantiated change extractor to capture spatio-temporal context simultaneously with lightweight operations; and (ii) a scene-guided axial attention-instantiated transformer decoder to extract more spatial details. State-of-the-art performance of CDMaskFormer is achieved on five benchmark datasets with a satisfactory efficiency-accuracy trade-off. Code is available at https://github.com/xwmaxwma/rschange.
A Remote Sensing Image Change Detection Method Integrating Layer Exchange and Channel-Spatial Differences
Change detection in remote sensing imagery is a critical technique for Earth observation, primarily focusing on pixel-level segmentation of change regions between bi-temporal images. The essence of pixel-level change detection lies in determining whether corresponding pixels in bi-temporal images have changed. In deep learning, the spatial and channel dimensions of feature maps represent different information from the original images. In this study, we found that in change detection tasks, difference information can be computed not only from the spatial dimension of bi-temporal features but also from the channel dimension. Therefore, we designed the Channel-Spatial Difference Weighting (CSDW) module as an aggregation-distribution mechanism for bi-temporal features in change detection. This module enhances the sensitivity of the change detection model to difference features. Additionally, bi-temporal images share the same geographic location and exhibit strong inter-image correlations. To construct the correlation between bi-temporal images, we designed a decoding structure based on the Layer-Exchange (LE) method to enhance the interaction of bi-temporal features. Comprehensive experiments on the CLCD, PX-CLCD, LEVIR-CD, and S2Looking datasets demonstrate that the proposed LENet model significantly improves change detection performance. The code and pre-trained models will be available at: https://github.com/dyzy41/lenet.
CFNet: Optimizing Remote Sensing Change Detection through Content-Aware Enhancement
Change detection is a crucial and widely applied task in remote sensing, aimed at identifying and analyzing changes occurring in the same geographical area over time. Due to variability in acquisition conditions, bi-temporal remote sensing images often exhibit significant differences in image style. Even with the powerful generalization capabilities of DNNs, these unpredictable style variations between bi-temporal images inevitably affect model's ability to accurately detect changed areas. To address issue above, we propose the Content Focuser Network (CFNet), which takes content-aware strategy as a key insight. CFNet employs EfficientNet-B5 as the backbone for feature extraction. To enhance the model's focus on the content features of images while mitigating the misleading effects of style features, we develop a constraint strategy that prioritizes the content features of bi-temporal images, termed Content-Aware. Furthermore, to enable the model to flexibly focus on changed and unchanged areas according to the requirements of different stages, we design a reweighting module based on the cosine distance between bi-temporal image features, termed Focuser. CFNet achieve outstanding performance across three well-known change detection datasets: CLCD (F1: 81.41%, IoU: 68.65%), LEVIR-CD (F1: 92.18%, IoU: 85.49%), and SYSU-CD (F1: 82.89%, IoU: 70.78%). The code and pretrained models of CFNet are publicly released at https://github.com/wifiBlack/CFNet.
Open-CD: A Comprehensive Toolbox for Change Detection
We present Open-CD, a change detection toolbox that contains a rich set of change detection methods as well as related components and modules. The toolbox started from a series of open source general vision task tools, including OpenMMLab Toolkits, PyTorch Image Models, etc. It gradually evolves into a unified platform that covers many popular change detection methods and contemporary modules. It not only includes training and inference codes, but also provides some useful scripts for data analysis. We believe this toolbox is by far the most complete change detection toolbox. In this report, we introduce the various features, supported methods and applications of Open-CD. In addition, we also conduct a benchmarking study on different methods and components. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new change detectors. Code and models are available at https://github.com/likyoo/open-cd. Pioneeringly, this report also includes brief descriptions of the algorithms supported in Open-CD, mainly contributed by their authors. We sincerely encourage researchers in this field to participate in this project and work together to create a more open community. This toolkit and report will be kept updated.
The Change You Want To Detect: Semantic Change Detection In Earth Observation With Hybrid Data Generation
Bi-temporal change detection at scale based on Very High Resolution (VHR) images is crucial for Earth monitoring. This remains poorly addressed so far: methods either require large volumes of annotated data (semantic case), or are limited to restricted datasets (binary set-ups). Most approaches do not exhibit the versatility required for temporal and spatial adaptation: simplicity in architecture design and pretraining on realistic and comprehensive datasets. Synthetic datasets are the key solution but still fail to handle complex and diverse scenes. In this paper, we present HySCDG a generative pipeline for creating a large hybrid semantic change detection dataset that contains both real VHR images and inpainted ones, along with land cover semantic map at both dates and the change map. Being semantically and spatially guided, HySCDG generates realistic images, leading to a comprehensive and hybrid transfer-proof dataset FSC-180k. We evaluate FSC-180k on five change detection cases (binary and semantic), from zero-shot to mixed and sequential training, and also under low data regime training. Experiments demonstrate that pretraining on our hybrid dataset leads to a significant performance boost, outperforming SyntheWorld, a fully synthetic dataset, in every configuration. All codes, models, and data are available here: https://yb23.github.io/projects/cywd/
RemoteVAR: Autoregressive Visual Modeling for Remote Sensing Change Detection
Remote sensing change detection aims to localize and characterize scene changes between two time points and is central to applications such as environmental monitoring and disaster assessment. Meanwhile, visual autoregressive models (VARs) have recently shown impressive image generation capability, but their adoption for pixel-level discriminative tasks remains limited due to weak controllability, suboptimal dense prediction performance and exposure bias. We introduce RemoteVAR, a new VAR-based change detection framework that addresses these limitations by conditioning autoregressive prediction on multi-resolution fused bi-temporal features via cross-attention, and by employing an autoregressive training strategy designed specifically for change map prediction. Extensive experiments on standard change detection benchmarks show that RemoteVAR delivers consistent and significant improvements over strong diffusion-based and transformer-based baselines, establishing a competitive autoregressive alternative for remote sensing change detection. Code will be available https://github.com/yilmazkorkmaz1/RemoteVAR{here}.
ChangeMamba: Remote Sensing Change Detection With Spatiotemporal State Space Model
Convolutional neural networks (CNN) and Transformers have made impressive progress in the field of remote sensing change detection (CD). However, both architectures have inherent shortcomings: CNN are constrained by a limited receptive field that may hinder their ability to capture broader spatial contexts, while Transformers are computationally intensive, making them costly to train and deploy on large datasets. Recently, the Mamba architecture, based on state space models, has shown remarkable performance in a series of natural language processing tasks, which can effectively compensate for the shortcomings of the above two architectures. In this paper, we explore for the first time the potential of the Mamba architecture for remote sensing CD tasks. We tailor the corresponding frameworks, called MambaBCD, MambaSCD, and MambaBDA, for binary change detection (BCD), semantic change detection (SCD), and building damage assessment (BDA), respectively. All three frameworks adopt the cutting-edge Visual Mamba architecture as the encoder, which allows full learning of global spatial contextual information from the input images. For the change decoder, which is available in all three architectures, we propose three spatio-temporal relationship modeling mechanisms, which can be naturally combined with the Mamba architecture and fully utilize its attribute to achieve spatio-temporal interaction of multi-temporal features, thereby obtaining accurate change information. On five benchmark datasets, our proposed frameworks outperform current CNN- and Transformer-based approaches without using any complex training strategies or tricks, fully demonstrating the potential of the Mamba architecture in CD tasks. Further experiments show that our architecture is quite robust to degraded data. The source code will be available in https://github.com/ChenHongruixuan/MambaCD
Time Travelling Pixels: Bitemporal Features Integration with Foundation Model for Remote Sensing Image Change Detection
Change detection, a prominent research area in remote sensing, is pivotal in observing and analyzing surface transformations. Despite significant advancements achieved through deep learning-based methods, executing high-precision change detection in spatio-temporally complex remote sensing scenarios still presents a substantial challenge. The recent emergence of foundation models, with their powerful universality and generalization capabilities, offers potential solutions. However, bridging the gap of data and tasks remains a significant obstacle. In this paper, we introduce Time Travelling Pixels (TTP), a novel approach that integrates the latent knowledge of the SAM foundation model into change detection. This method effectively addresses the domain shift in general knowledge transfer and the challenge of expressing homogeneous and heterogeneous characteristics of multi-temporal images. The state-of-the-art results obtained on the LEVIR-CD underscore the efficacy of the TTP. The Code is available at https://kychen.me/TTP.
Changer: Feature Interaction is What You Need for Change Detection
Change detection is an important tool for long-term earth observation missions. It takes bi-temporal images as input and predicts "where" the change has occurred. Different from other dense prediction tasks, a meaningful consideration for change detection is the interaction between bi-temporal features. With this motivation, in this paper we propose a novel general change detection architecture, MetaChanger, which includes a series of alternative interaction layers in the feature extractor. To verify the effectiveness of MetaChanger, we propose two derived models, ChangerAD and ChangerEx with simple interaction strategies: Aggregation-Distribution (AD) and "exchange". AD is abstracted from some complex interaction methods, and "exchange" is a completely parameter\&computation-free operation by exchanging bi-temporal features. In addition, for better alignment of bi-temporal features, we propose a flow dual-alignment fusion (FDAF) module which allows interactive alignment and feature fusion. Crucially, we observe Changer series models achieve competitive performance on different scale change detection datasets. Further, our proposed ChangerAD and ChangerEx could serve as a starting baseline for future MetaChanger design.
Deep Active Learning in Remote Sensing for data efficient Change Detection
We investigate active learning in the context of deep neural network models for change detection and map updating. Active learning is a natural choice for a number of remote sensing tasks, including the detection of local surface changes: changes are on the one hand rare and on the other hand their appearance is varied and diffuse, making it hard to collect a representative training set in advance. In the active learning setting, one starts from a minimal set of training examples and progressively chooses informative samples that are annotated by a user and added to the training set. Hence, a core component of an active learning system is a mechanism to estimate model uncertainty, which is then used to pick uncertain, informative samples. We study different mechanisms to capture and quantify this uncertainty when working with deep networks, based on the variance or entropy across explicit or implicit model ensembles. We show that active learning successfully finds highly informative samples and automatically balances the training distribution, and reaches the same performance as a model supervised with a large, pre-annotated training set, with approx99% fewer annotated samples.
Single-Temporal Supervised Learning for Universal Remote Sensing Change Detection
Bitemporal supervised learning paradigm always dominates remote sensing change detection using numerous labeled bitemporal image pairs, especially for high spatial resolution (HSR) remote sensing imagery. However, it is very expensive and labor-intensive to label change regions in large-scale bitemporal HSR remote sensing image pairs. In this paper, we propose single-temporal supervised learning (STAR) for universal remote sensing change detection from a new perspective of exploiting changes between unpaired images as supervisory signals. STAR enables us to train a high-accuracy change detector only using unpaired labeled images and can generalize to real-world bitemporal image pairs. To demonstrate the flexibility and scalability of STAR, we design a simple yet unified change detector, termed ChangeStar2, capable of addressing binary change detection, object change detection, and semantic change detection in one architecture. ChangeStar2 achieves state-of-the-art performances on eight public remote sensing change detection datasets, covering above two supervised settings, multiple change types, multiple scenarios. The code is available at https://github.com/Z-Zheng/pytorch-change-models.
JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
Deep learning has achieved significant success in the field of remote sensing image change detection (CD), yet two major challenges remain: the scarcity of sub-meter, all-inclusive open-source CD datasets, and the difficulty of achieving consistent and satisfactory detection results across images with varying change areas. To address these issues, we introduce the JL1-CD dataset, which contains 5,000 pairs of 512 x 512 pixel images with a resolution of 0.5 to 0.75 meters. Additionally, we propose a multi-teacher knowledge distillation (MTKD) framework for CD. Experimental results on the JL1-CD and SYSU-CD datasets demonstrate that the MTKD framework significantly improves the performance of CD models with various network architectures and parameter sizes, achieving new state-of-the-art results. The code is available at https://github.com/circleLZY/MTKD-CD.
Text-conditioned State Space Model For Domain-generalized Change Detection Visual Question Answering
The Earth's surface is constantly changing, and detecting these changes provides valuable insights that benefit various aspects of human society. While traditional change detection methods have been employed to detect changes from bi-temporal images, these approaches typically require expert knowledge for accurate interpretation. To enable broader and more flexible access to change information by non-expert users, the task of Change Detection Visual Question Answering (CDVQA) has been introduced. However, existing CDVQA methods have been developed under the assumption that training and testing datasets share similar distributions. This assumption does not hold in real-world applications, where domain shifts often occur. In this paper, the CDVQA task is revisited with a focus on addressing domain shift. To this end, a new multi-modal and multi-domain dataset, BrightVQA, is introduced to facilitate domain generalization research in CDVQA. Furthermore, a novel state space model, termed Text-Conditioned State Space Model (TCSSM), is proposed. The TCSSM framework is designed to leverage both bi-temporal imagery and geo-disaster-related textual information in an unified manner to extract domain-invariant features across domains. Input-dependent parameters existing in TCSSM are dynamically predicted by using both bi-temporal images and geo-disaster-related description, thereby facilitating the alignment between bi-temporal visual data and the associated textual descriptions. Extensive experiments are conducted to evaluate the proposed method against state-of-the-art models, and superior performance is consistently demonstrated. The code and dataset will be made publicly available upon acceptance at https://github.com/Elman295/TCSSM.
CDMamba: Incorporating Local Clues into Mamba for Remote Sensing Image Binary Change Detection
Recently, the Mamba architecture based on state space models has demonstrated remarkable performance in a series of natural language processing tasks and has been rapidly applied to remote sensing change detection (CD) tasks. However, most methods enhance the global receptive field by directly modifying the scanning mode of Mamba, neglecting the crucial role that local information plays in dense prediction tasks (e.g., binary CD). In this article, we propose a model called CDMamba, which effectively combines global and local features for handling binary CD tasks. Specifically, the Scaled Residual ConvMamba (SRCM) block is proposed to utilize the ability of Mamba to extract global features and convolution to enhance the local details to alleviate the issue that current Mamba-based methods lack detailed clues and are difficult to achieve fine detection in dense prediction tasks. Furthermore, considering the characteristics of bi-temporal feature interaction required for CD, the Adaptive Global Local Guided Fusion (AGLGF) block is proposed to dynamically facilitate the bi-temporal interaction guided by other temporal global/local features. Our intuition is that more discriminative change features can be acquired with the guidance of other temporal features. Extensive experiments on five datasets demonstrate that our proposed CDMamba is comparable to the current methods (such as the F1/IoU scores are improved by 2.10%/3.00% and 2.44%/2.91% on LEVIR+CD and CLCD, respectively). Our code is open-sourced at https://github.com/zmoka-zht/CDMamba.
FSG-Net: Frequency-Spatial Synergistic Gated Network for High-Resolution Remote Sensing Change Detection
Change detection from high-resolution remote sensing images lies as a cornerstone of Earth observation applications, yet its efficacy is often compromised by two critical challenges. First, false alarms are prevalent as models misinterpret radiometric variations from temporal shifts (e.g., illumination, season) as genuine changes. Second, a non-negligible semantic gap between deep abstract features and shallow detail-rich features tends to obstruct their effective fusion, culminating in poorly delineated boundaries. To step further in addressing these issues, we propose the Frequency-Spatial Synergistic Gated Network (FSG-Net), a novel paradigm that aims to systematically disentangle semantic changes from nuisance variations. Specifically, FSG-Net first operates in the frequency domain, where a Discrepancy-Aware Wavelet Interaction Module (DAWIM) adaptively mitigates pseudo-changes by discerningly processing different frequency components. Subsequently, the refined features are enhanced in the spatial domain by a Synergistic Temporal-Spatial Attention Module (STSAM), which amplifies the saliency of genuine change regions. To finally bridge the semantic gap, a Lightweight Gated Fusion Unit (LGFU) leverages high-level semantics to selectively gate and integrate crucial details from shallow layers. Comprehensive experiments on the CDD, GZ-CD, and LEVIR-CD benchmarks validate the superiority of FSG-Net, establishing a new state-of-the-art with F1-scores of 94.16%, 89.51%, and 91.27%, respectively. The code will be made available at https://github.com/zxXie-Air/FSG-Net after a possible publication.
SceneDiff: A Benchmark and Method for Multiview Object Change Detection
We investigate the problem of identifying objects that have been added, removed, or moved between a pair of captures (images or videos) of the same scene at different times. Detecting such changes is important for many applications, such as robotic tidying or construction progress and safety monitoring. A major challenge is that varying viewpoints can cause objects to falsely appear changed. We introduce SceneDiff Benchmark, the first multiview change detection benchmark with object instance annotations, comprising 350 diverse video pairs with thousands of changed objects. We also introduce the SceneDiff method, a new training-free approach for multiview object change detection that leverages pretrained 3D, segmentation, and image encoding models to robustly predict across multiple benchmarks. Our method aligns the captures in 3D, extracts object regions, and compares spatial and semantic region features to detect changes. Experiments on multi-view and two-view benchmarks demonstrate that our method outperforms existing approaches by large margins (94% and 37.4% relative AP improvements). The benchmark and code will be publicly released.
BD-MSA: Body decouple VHR Remote Sensing Image Change Detection method guided by multi-scale feature information aggregation
The purpose of remote sensing image change detection (RSCD) is to detect differences between bi-temporal images taken at the same place. Deep learning has been extensively used to RSCD tasks, yielding significant results in terms of result recognition. However, due to the shooting angle of the satellite, the impacts of thin clouds, and certain lighting conditions, the problem of fuzzy edges in the change region in some remote sensing photographs cannot be properly handled using current RSCD algorithms. To solve this issue, we proposed a Body Decouple Multi-Scale by fearure Aggregation change detection (BD-MSA), a novel model that collects both global and local feature map information in the channel and space dimensions of the feature map during the training and prediction phases. This approach allows us to successfully extract the change region's boundary information while also divorcing the change region's main body from its boundary. Numerous studies have shown that the assessment metrics and evaluation effects of the model described in this paper on the publicly available datasets DSIFN-CD, S2Looking and WHU-CD are the best when compared to other models.
AtrousMamaba: An Atrous-Window Scanning Visual State Space Model for Remote Sensing Change Detection
Recently, a novel visual state space (VSS) model, referred to as Mamba, has demonstrated significant progress in modeling long sequences with linear complexity, comparable to Transformer models, thereby enhancing its adaptability for processing visual data. Although most methods aim to enhance the global receptive field by directly modifying Mamba's scanning mechanism, they tend to overlook the critical importance of local information in dense prediction tasks. Additionally, whether Mamba can effectively extract local features as convolutional neural networks (CNNs) do remains an open question that merits further investigation. In this paper, We propose a novel model, AtrousMamba, which effectively balances the extraction of fine-grained local details with the integration of global contextual information. Specifically, our method incorporates an atrous-window selective scan mechanism, enabling a gradual expansion of the scanning range with adjustable rates. This design shortens the distance between adjacent tokens, enabling the model to effectively capture fine-grained local features and global context. By leveraging the atrous window scan visual state space (AWVSS) module, we design dedicated end-to-end Mamba-based frameworks for binary change detection (BCD) and semantic change detection (SCD), referred to as AWMambaBCD and AWMambaSCD, respectively. Experimental results on six benchmark datasets show that the proposed framework outperforms existing CNN-based, Transformer-based, and Mamba-based methods. These findings clearly demonstrate that Mamba not only captures long-range dependencies in visual data but also effectively preserves fine-grained local details.
SyntheWorld: A Large-Scale Synthetic Dataset for Land Cover Mapping and Building Change Detection
Synthetic datasets, recognized for their cost effectiveness, play a pivotal role in advancing computer vision tasks and techniques. However, when it comes to remote sensing image processing, the creation of synthetic datasets becomes challenging due to the demand for larger-scale and more diverse 3D models. This complexity is compounded by the difficulties associated with real remote sensing datasets, including limited data acquisition and high annotation costs, which amplifies the need for high-quality synthetic alternatives. To address this, we present SyntheWorld, a synthetic dataset unparalleled in quality, diversity, and scale. It includes 40,000 images with submeter-level pixels and fine-grained land cover annotations of eight categories, and it also provides 40,000 pairs of bitemporal image pairs with building change annotations for building change detection task. We conduct experiments on multiple benchmark remote sensing datasets to verify the effectiveness of SyntheWorld and to investigate the conditions under which our synthetic data yield advantages. We will release SyntheWorld to facilitate remote sensing image processing research.
Segment Any Change
Visual foundation models have achieved remarkable results in zero-shot image classification and segmentation, but zero-shot change detection remains an open problem. In this paper, we propose the segment any change models (AnyChange), a new type of change detection model that supports zero-shot prediction and generalization on unseen change types and data distributions. AnyChange is built on the segment anything model (SAM) via our training-free adaptation method, bitemporal latent matching. By revealing and exploiting intra-image and inter-image semantic similarities in SAM's latent space, bitemporal latent matching endows SAM with zero-shot change detection capabilities in a training-free way. We also propose a point query mechanism to enable AnyChange's zero-shot object-centric change detection capability. We perform extensive experiments to confirm the effectiveness of AnyChange for zero-shot change detection. AnyChange sets a new record on the SECOND benchmark for unsupervised change detection, exceeding the previous SOTA by up to 4.4% F_1 score, and achieving comparable accuracy with negligible manual annotations (1 pixel per image) for supervised change detection.
SemiCD-VL: Visual-Language Model Guidance Makes Better Semi-supervised Change Detector
Change Detection (CD) aims to identify pixels with semantic changes between images. However, annotating massive numbers of pixel-level images is labor-intensive and costly, especially for multi-temporal images, which require pixel-wise comparisons by human experts. Considering the excellent performance of visual language models (VLMs) for zero-shot, open-vocabulary, etc. with prompt-based reasoning, it is promising to utilize VLMs to make better CD under limited labeled data. In this paper, we propose a VLM guidance-based semi-supervised CD method, namely SemiCD-VL. The insight of SemiCD-VL is to synthesize free change labels using VLMs to provide additional supervision signals for unlabeled data. However, almost all current VLMs are designed for single-temporal images and cannot be directly applied to bi- or multi-temporal images. Motivated by this, we first propose a VLM-based mixed change event generation (CEG) strategy to yield pseudo labels for unlabeled CD data. Since the additional supervised signals provided by these VLM-driven pseudo labels may conflict with the pseudo labels from the consistency regularization paradigm (e.g. FixMatch), we propose the dual projection head for de-entangling different signal sources. Further, we explicitly decouple the bi-temporal images semantic representation through two auxiliary segmentation decoders, which are also guided by VLM. Finally, to make the model more adequately capture change representations, we introduce metric-aware supervision by feature-level contrastive loss in auxiliary branches. Extensive experiments show the advantage of SemiCD-VL. For instance, SemiCD-VL improves the FixMatch baseline by +5.3 IoU on WHU-CD and by +2.4 IoU on LEVIR-CD with 5% labels. In addition, our CEG strategy, in an un-supervised manner, can achieve performance far superior to state-of-the-art un-supervised CD methods.
DynamicVL: Benchmarking Multimodal Large Language Models for Dynamic City Understanding
Multimodal large language models have demonstrated remarkable capabilities in visual understanding, but their application to long-term Earth observation analysis remains limited, primarily focusing on single-temporal or bi-temporal imagery. To address this gap, we introduce DVL-Suite, a comprehensive framework for analyzing long-term urban dynamics through remote sensing imagery. Our suite comprises 15,063 high-resolution (1.0m) multi-temporal images spanning 42 megacities in the U.S. from 2005 to 2023, organized into two components: DVL-Bench and DVL-Instruct. The DVL-Bench includes seven urban understanding tasks, from fundamental change detection (pixel-level) to quantitative analyses (regional-level) and comprehensive urban narratives (scene-level), capturing diverse urban dynamics including expansion/transformation patterns, disaster assessment, and environmental challenges. We evaluate 17 state-of-the-art multimodal large language models and reveal their limitations in long-term temporal understanding and quantitative analysis. These challenges motivate the creation of DVL-Instruct, a specialized instruction-tuning dataset designed to enhance models' capabilities in multi-temporal Earth observation. Building upon this dataset, we develop DVLChat, a baseline model capable of both image-level question-answering and pixel-level segmentation, facilitating a comprehensive understanding of city dynamics through language interactions.
GFM: Building Geospatial Foundation Models via Continual Pretraining
Geospatial technologies are becoming increasingly essential in our world for a wide range of applications, including agriculture, urban planning, and disaster response. To help improve the applicability and performance of deep learning models on these geospatial tasks, various works have begun investigating foundation models for this domain. Researchers have explored two prominent approaches for introducing such models in geospatial applications, but both have drawbacks in terms of limited performance benefit or prohibitive training cost. Therefore, in this work, we propose a novel paradigm for building highly effective geospatial foundation models with minimal resource cost and carbon impact. We first construct a compact yet diverse dataset from multiple sources to promote feature diversity, which we term GeoPile. Then, we investigate the potential of continual pretraining from large-scale ImageNet-22k models and propose a multi-objective continual pretraining paradigm, which leverages the strong representations of ImageNet while simultaneously providing the freedom to learn valuable in-domain features. Our approach outperforms previous state-of-the-art geospatial pretraining methods in an extensive evaluation on seven downstream datasets covering various tasks such as change detection, classification, multi-label classification, semantic segmentation, and super-resolution.
MM-Claims: A Dataset for Multimodal Claim Detection in Social Media
In recent years, the problem of misinformation on the web has become widespread across languages, countries, and various social media platforms. Although there has been much work on automated fake news detection, the role of images and their variety are not well explored. In this paper, we investigate the roles of image and text at an earlier stage of the fake news detection pipeline, called claim detection. For this purpose, we introduce a novel dataset, MM-Claims, which consists of tweets and corresponding images over three topics: COVID-19, Climate Change and broadly Technology. The dataset contains roughly 86000 tweets, out of which 3400 are labeled manually by multiple annotators for the training and evaluation of multimodal models. We describe the dataset in detail, evaluate strong unimodal and multimodal baselines, and analyze the potential and drawbacks of current models.
UniRS: Unifying Multi-temporal Remote Sensing Tasks through Vision Language Models
The domain gap between remote sensing imagery and natural images has recently received widespread attention and Vision-Language Models (VLMs) have demonstrated excellent generalization performance in remote sensing multimodal tasks. However, current research is still limited in exploring how remote sensing VLMs handle different types of visual inputs. To bridge this gap, we introduce UniRS, the first vision-language model unifying multi-temporal remote sensing tasks across various types of visual input. UniRS supports single images, dual-time image pairs, and videos as input, enabling comprehensive remote sensing temporal analysis within a unified framework. We adopt a unified visual representation approach, enabling the model to accept various visual inputs. For dual-time image pair tasks, we customize a change extraction module to further enhance the extraction of spatiotemporal features. Additionally, we design a prompt augmentation mechanism tailored to the model's reasoning process, utilizing the prior knowledge of the general-purpose VLM to provide clues for UniRS. To promote multi-task knowledge sharing, the model is jointly fine-tuned on a mixed dataset. Experimental results show that UniRS achieves state-of-the-art performance across diverse tasks, including visual question answering, change captioning, and video scene classification, highlighting its versatility and effectiveness in unifying these multi-temporal remote sensing tasks. Our code and dataset will be released soon.
Open-Canopy: A Country-Scale Benchmark for Canopy Height Estimation at Very High Resolution
Estimating canopy height and canopy height change at meter resolution from satellite imagery has numerous applications, such as monitoring forest health, logging activities, wood resources, and carbon stocks. However, many existing forest datasets are based on commercial or closed data sources, restricting the reproducibility and evaluation of new approaches. To address this gap, we introduce Open-Canopy, the first open-access and country-scale benchmark for very high resolution (1.5 m) canopy height estimation. Covering more than 87,000 km^2 across France, Open-Canopy combines SPOT satellite imagery with high resolution aerial LiDAR data. We also propose Open-Canopy-Delta, the first benchmark for canopy height change detection between two images taken at different years, a particularly challenging task even for recent models. To establish a robust foundation for these benchmarks, we evaluate a comprehensive list of state-of-the-art computer vision models for canopy height estimation. The dataset and associated codes can be accessed at https://github.com/fajwel/Open-Canopy.
ClimaText: A Dataset for Climate Change Topic Detection
Climate change communication in the mass media and other textual sources may affect and shape public perception. Extracting climate change information from these sources is an important task, e.g., for filtering content and e-discovery, sentiment analysis, automatic summarization, question-answering, and fact-checking. However, automating this process is a challenge, as climate change is a complex, fast-moving, and often ambiguous topic with scarce resources for popular text-based AI tasks. In this paper, we introduce ClimaText, a dataset for sentence-based climate change topic detection, which we make publicly available. We explore different approaches to identify the climate change topic in various text sources. We find that popular keyword-based models are not adequate for such a complex and evolving task. Context-based algorithms like BERT devlin2018bert can detect, in addition to many trivial cases, a variety of complex and implicit topic patterns. Nevertheless, our analysis reveals a great potential for improvement in several directions, such as, e.g., capturing the discussion on indirect effects of climate change. Hence, we hope this work can serve as a good starting point for further research on this topic.
Generalization of Change-Point Detection in Time Series Data Based on Direct Density Ratio Estimation
The goal of the change-point detection is to discover changes of time series distribution. One of the state of the art approaches of the change-point detection are based on direct density ratio estimation. In this work we show how existing algorithms can be generalized using various binary classification and regression models. In particular, we show that the Gradient Boosting over Decision Trees and Neural Networks can be used for this purpose. The algorithms are tested on several synthetic and real-world datasets. The results show that the proposed methods outperform classical RuLSIF algorithm. Discussion of cases where the proposed algorithms have advantages over existing methods are also provided.
Divide and Conquer Dynamic Programming: An Almost Linear Time Change Point Detection Methodology in High Dimensions
We develop a novel, general and computationally efficient framework, called Divide and Conquer Dynamic Programming (DCDP), for localizing change points in time series data with high-dimensional features. DCDP deploys a class of greedy algorithms that are applicable to a broad variety of high-dimensional statistical models and can enjoy almost linear computational complexity. We investigate the performance of DCDP in three commonly studied change point settings in high dimensions: the mean model, the Gaussian graphical model, and the linear regression model. In all three cases, we derive non-asymptotic bounds for the accuracy of the DCDP change point estimators. We demonstrate that the DCDP procedures consistently estimate the change points with sharp, and in some cases, optimal rates while incurring significantly smaller computational costs than the best available algorithms. Our findings are supported by extensive numerical experiments on both synthetic and real data.
EditInspector: A Benchmark for Evaluation of Text-Guided Image Edits
Text-guided image editing, fueled by recent advancements in generative AI, is becoming increasingly widespread. This trend highlights the need for a comprehensive framework to verify text-guided edits and assess their quality. To address this need, we introduce EditInspector, a novel benchmark for evaluation of text-guided image edits, based on human annotations collected using an extensive template for edit verification. We leverage EditInspector to evaluate the performance of state-of-the-art (SoTA) vision and language models in assessing edits across various dimensions, including accuracy, artifact detection, visual quality, seamless integration with the image scene, adherence to common sense, and the ability to describe edit-induced changes. Our findings indicate that current models struggle to evaluate edits comprehensively and frequently hallucinate when describing the changes. To address these challenges, we propose two novel methods that outperform SoTA models in both artifact detection and difference caption generation.
Contextual Object Detection with Multimodal Large Language Models
Recent Multimodal Large Language Models (MLLMs) are remarkable in vision-language tasks, such as image captioning and question answering, but lack the essential perception ability, i.e., object detection. In this work, we address this limitation by introducing a novel research problem of contextual object detection -- understanding visible objects within different human-AI interactive contexts. Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering. Moreover, we present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts, so as to locate, identify, and associate visual objects with language inputs for human-AI interaction. Our ContextDET involves three key submodels: (i) a visual encoder for extracting visual representations, (ii) a pre-trained LLM for multimodal context decoding, and (iii) a visual decoder for predicting bounding boxes given contextual object words. The new generate-then-detect framework enables us to detect object words within human vocabulary. Extensive experiments show the advantages of ContextDET on our proposed CODE benchmark, open-vocabulary detection, and referring image segmentation. Github: https://github.com/yuhangzang/ContextDET.
Pretraining Language Models for Diachronic Linguistic Change Discovery
Large language models (LLMs) have shown potential as tools for scientific discovery. This has engendered growing interest in their use in humanistic disciplines, such as historical linguistics and literary studies. These fields often construct arguments on the basis of delineations like genre, or more inflexibly, time period. Although efforts have been made to restrict inference to specific domains via fine-tuning or model editing, we posit that the only true guarantee is domain-restricted pretraining -- typically, a data- and compute-expensive proposition. We show that efficient pretraining techniques can produce useful models over corpora too large for easy manual inspection but too small for "typical" LLM approaches. We employ a novel date-attribution pipeline in order to obtain a temporally-segmented dataset of five 10-million-word slices. We train two corresponding five-model batteries over these corpus segments, efficient pretraining and Llama3-8B parameter efficiently finetuned. We find that the pretrained models are faster to train than the finetuned baselines and that they better respect the historical divisions of our corpus. Emphasizing speed and precision over a-historical comprehensiveness enables a number of novel approaches to hypothesis discovery and testing in our target fields. Taking up diachronic linguistics as a testbed, we show that our method enables the detection of a diverse set of phenomena, including en masse lexical change, non-lexical (grammatical and morphological) change, and word sense introduction/obsolescence. We provide a ready-to-use pipeline that allows extension of our approach to other target fields with only minimal adaptation.
Language Models Optimized to Fool Detectors Still Have a Distinct Style (And How to Change It)
Despite considerable progress in the development of machine-text detectors, it has been suggested that the problem is inherently hard, and therefore, that stakeholders should proceed under the assumption that machine-generated text cannot be reliably detected as such. We examine a recent such claim by Nicks et al. (2024) regarding the ease with which language models can be optimized to degrade the performance of machine-text detectors, including detectors not specifically optimized against. We identify a feature spacex2013the stylistic feature spacex2013that is robust to such optimization, and show that it may be used to reliably detect samples from language models optimized to prevent detection. Furthermore, we show that even when models are explicitly optimized against stylistic detectors, detection performance remains surprisingly unaffected. We then seek to understand if stylistic detectors are inherently more robust. To study this question, we explore a new paraphrasing approach that simultaneously aims to close the gap between human writing and machine writing in stylistic feature space while avoiding detection using traditional features. We show that when only a single sample is available for detection, this attack is universally effective across all detectors considered, including those that use writing style. However, as the number of samples available for detection grows, the human and machine distributions become distinguishable. This observation encourages us to introduce AURA, a metric that estimates the overlap between human and machine-generated distributions by analyzing how detector performance improves as more samples become available. Overall, our findings underscore previous recommendations to avoid reliance on machine-text detection.
MMDetection: Open MMLab Detection Toolbox and Benchmark
We present MMDetection, an object detection toolbox that contains a rich set of object detection and instance segmentation methods as well as related components and modules. The toolbox started from a codebase of MMDet team who won the detection track of COCO Challenge 2018. It gradually evolves into a unified platform that covers many popular detection methods and contemporary modules. It not only includes training and inference codes, but also provides weights for more than 200 network models. We believe this toolbox is by far the most complete detection toolbox. In this paper, we introduce the various features of this toolbox. In addition, we also conduct a benchmarking study on different methods, components, and their hyper-parameters. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors. Code and models are available at https://github.com/open-mmlab/mmdetection. The project is under active development and we will keep this document updated.
Reliable and Interpretable Drift Detection in Streams of Short Texts
Data drift is the change in model input data that is one of the key factors leading to machine learning models performance degradation over time. Monitoring drift helps detecting these issues and preventing their harmful consequences. Meaningful drift interpretation is a fundamental step towards effective re-training of the model. In this study we propose an end-to-end framework for reliable model-agnostic change-point detection and interpretation in large task-oriented dialog systems, proven effective in multiple customer deployments. We evaluate our approach and demonstrate its benefits with a novel variant of intent classification training dataset, simulating customer requests to a dialog system. We make the data publicly available.
Logical Fallacy Detection
Reasoning is central to human intelligence. However, fallacious arguments are common, and some exacerbate problems such as spreading misinformation about climate change. In this paper, we propose the task of logical fallacy detection, and provide a new dataset (Logic) of logical fallacies generally found in text, together with an additional challenge set for detecting logical fallacies in climate change claims (LogicClimate). Detecting logical fallacies is a hard problem as the model must understand the underlying logical structure of the argument. We find that existing pretrained large language models perform poorly on this task. In contrast, we show that a simple structure-aware classifier outperforms the best language model by 5.46% on Logic and 4.51% on LogicClimate. We encourage future work to explore this task as (a) it can serve as a new reasoning challenge for language models, and (b) it can have potential applications in tackling the spread of misinformation. Our dataset and code are available at https://github.com/causalNLP/logical-fallacy
Historical Ink: Semantic Shift Detection for 19th Century Spanish
This paper explores the evolution of word meanings in 19th-century Spanish texts, with an emphasis on Latin American Spanish, using computational linguistics techniques. It addresses the Semantic Shift Detection (SSD) task, which is crucial for understanding linguistic evolution, particularly in historical contexts. The study focuses on analyzing a set of Spanish target words. To achieve this, a 19th-century Spanish corpus is constructed, and a customizable pipeline for SSD tasks is developed. This pipeline helps find the senses of a word and measure their semantic change between two corpora using fine-tuned BERT-like models with old Spanish texts for both Latin American and general Spanish cases. The results provide valuable insights into the cultural and societal shifts reflected in language changes over time.
Towards Scalable AASIST: Refining Graph Attention for Speech Deepfake Detection
Advances in voice conversion and text-to-speech synthesis have made automatic speaker verification (ASV) systems more susceptible to spoofing attacks. This work explores modest refinements to the AASIST anti-spoofing architecture. It incorporates a frozen Wav2Vec 2.0 encoder to retain self-supervised speech representations in limited-data settings, substitutes the original graph attention block with a standardized multi-head attention module using heterogeneous query projections, and replaces heuristic frame-segment fusion with a trainable, context-aware integration layer. When evaluated on the ASVspoof 5 corpus, the proposed system reaches a 7.6\% equal error rate (EER), improving on a re-implemented AASIST baseline under the same training conditions. Ablation experiments suggest that each architectural change contributes to the overall performance, indicating that targeted adjustments to established models may help strengthen speech deepfake detection in practical scenarios. The code is publicly available at https://github.com/KORALLLL/AASIST_SCALING.
Assessing Representation Stability for Transformer Models
Adversarial text attacks remain a persistent threat to transformer models, yet existing defenses are typically attack-specific or require costly model retraining. We introduce Representation Stability (RS), a model-agnostic detection framework that identifies adversarial examples by measuring how embedding representations change when important words are masked. RS first ranks words using importance heuristics, then measures embedding sensitivity to masking top-k critical words, and processes the resulting patterns with a BiLSTM detector. Experiments show that adversarially perturbed words exhibit disproportionately high masking sensitivity compared to naturally important words. Across three datasets, three attack types, and two victim models, RS achieves over 88% detection accuracy and demonstrates competitive performance compared to existing state-of-the-art methods, often at lower computational cost. Using Normalized Discounted Cumulative Gain (NDCG) to measure perturbation identification quality, we reveal that gradient-based ranking outperforms attention and random selection approaches, with identification quality correlating with detection performance for word-level attacks. RS also generalizes well to unseen datasets, attacks, and models without retraining, providing a practical solution for adversarial text detection.
Perspective-Aware Reasoning in Vision-Language Models via Mental Imagery Simulation
We present a framework for perspective-aware reasoning in vision-language models (VLMs) through mental imagery simulation. Perspective-taking, the ability to perceive an environment or situation from an alternative viewpoint, is a key benchmark for human-level visual understanding, essential for environmental interaction and collaboration with autonomous agents. Despite advancements in spatial reasoning within VLMs, recent research has shown that modern VLMs significantly lack perspective-aware reasoning capabilities and exhibit a strong bias toward egocentric interpretations. To bridge the gap between VLMs and human perception, we focus on the role of mental imagery, where humans perceive the world through abstracted representations that facilitate perspective shifts. Motivated by this, we propose a framework for perspective-aware reasoning, named Abstract Perspective Change (APC), that effectively leverages vision foundation models, such as object detection, segmentation, and orientation estimation, to construct scene abstractions and enable perspective transformations. Our experiments on synthetic and real-image benchmarks, compared with various VLMs, demonstrate significant improvements in perspective-aware reasoning with our framework, further outperforming fine-tuned spatial reasoning models and novel-view-synthesis-based approaches.
MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks. Pretraining is an active research topic, encompassing supervised and self-supervised learning methods to initialize model weights effectively. However, transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks. In this study, we explore the Multi-Task Pretraining (MTP) paradigm for RS foundation models to address this issue. Using a shared encoder and task-specific decoder architecture, we conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection. MTP supports both convolutional neural networks and vision transformer foundation models with over 300 million parameters. The pretrained models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection. Extensive experiments across 14 datasets demonstrate the superiority of our models over existing ones of similar size and their competitive performance compared to larger state-of-the-art models, thus validating the effectiveness of MTP.
Remote Sensing Change Detection via Weak Temporal Supervision
Semantic change detection in remote sensing aims to identify land cover changes between bi-temporal image pairs. Progress in this area has been limited by the scarcity of annotated datasets, as pixel-level annotation is costly and time-consuming. To address this, recent methods leverage synthetic data or generate artificial change pairs, but out-of-domain generalization remains limited. In this work, we introduce a weak temporal supervision strategy that leverages additional temporal observations of existing single-temporal datasets, without requiring any new annotations. Specifically, we extend single-date remote sensing datasets with new observations acquired at different times and train a change detection model by assuming that real bi-temporal pairs mostly contain no change, while pairing images from different locations to generate change examples. To handle the inherent noise in these weak labels, we employ an object-aware change map generation and an iterative refinement process. We validate our approach on extended versions of the FLAIR and IAILD aerial datasets, achieving strong zero-shot and low-data regime performance across different benchmarks. Lastly, we showcase results over large areas in France, highlighting the scalability potential of our method.
CityPulse: Fine-Grained Assessment of Urban Change with Street View Time Series
Urban transformations have profound societal impact on both individuals and communities at large. Accurately assessing these shifts is essential for understanding their underlying causes and ensuring sustainable urban planning. Traditional measurements often encounter constraints in spatial and temporal granularity, failing to capture real-time physical changes. While street view imagery, capturing the heartbeat of urban spaces from a pedestrian point of view, can add as a high-definition, up-to-date, and on-the-ground visual proxy of urban change. We curate the largest street view time series dataset to date, and propose an end-to-end change detection model to effectively capture physical alterations in the built environment at scale. We demonstrate the effectiveness of our proposed method by benchmark comparisons with previous literature and implementing it at the city-wide level. Our approach has the potential to supplement existing dataset and serve as a fine-grained and accurate assessment of urban change.
Forest-Chat: Adapting Vision-Language Agents for Interactive Forest Change Analysis
The increasing availability of high-resolution satellite imagery, together with advances in deep learning, creates new opportunities for enhancing forest monitoring workflows. Two central challenges in this domain are pixel-level change detection and semantic change interpretation, particularly for complex forest dynamics. While large language models (LLMs) are increasingly adopted for data exploration, their integration with vision-language models (VLMs) for remote sensing image change interpretation (RSICI) remains underexplored, especially beyond urban environments. We introduce Forest-Chat, an LLM-driven agent designed for integrated forest change analysis. The proposed framework enables natural language querying and supports multiple RSICI tasks, including change detection, change captioning, object counting, deforestation percentage estimation, and change reasoning. Forest-Chat builds upon a multi-level change interpretation (MCI) vision-language backbone with LLM-based orchestration, and incorporates zero-shot change detection via a foundation change detection model together with an interactive point-prompt interface to support fine-grained user guidance. To facilitate adaptation and evaluation in forest environments, we introduce the Forest-Change dataset, comprising bi-temporal satellite imagery, pixel-level change masks, and multi-granularity semantic change captions generated through a combination of human annotation and rule-based methods. Experimental results demonstrate that Forest-Chat achieves strong performance on Forest-Change and on LEVIR-MCI-Trees, a tree-focused subset of LEVIR-MCI, for joint change detection and captioning, highlighting the potential of interactive, LLM-driven RSICI systems to improve accessibility, interpretability, and analytical efficiency in forest change analysis.
RSBuilding: Towards General Remote Sensing Image Building Extraction and Change Detection with Foundation Model
The intelligent interpretation of buildings plays a significant role in urban planning and management, macroeconomic analysis, population dynamics, etc. Remote sensing image building interpretation primarily encompasses building extraction and change detection. However, current methodologies often treat these two tasks as separate entities, thereby failing to leverage shared knowledge. Moreover, the complexity and diversity of remote sensing image scenes pose additional challenges, as most algorithms are designed to model individual small datasets, thus lacking cross-scene generalization. In this paper, we propose a comprehensive remote sensing image building understanding model, termed RSBuilding, developed from the perspective of the foundation model. RSBuilding is designed to enhance cross-scene generalization and task universality. Specifically, we extract image features based on the prior knowledge of the foundation model and devise a multi-level feature sampler to augment scale information. To unify task representation and integrate image spatiotemporal clues, we introduce a cross-attention decoder with task prompts. Addressing the current shortage of datasets that incorporate annotations for both tasks, we have developed a federated training strategy to facilitate smooth model convergence even when supervision for some tasks is missing, thereby bolstering the complementarity of different tasks. Our model was trained on a dataset comprising up to 245,000 images and validated on multiple building extraction and change detection datasets. The experimental results substantiate that RSBuilding can concurrently handle two structurally distinct tasks and exhibits robust zero-shot generalization capabilities.
Semantic Change Detection with Asymmetric Siamese Networks
Given two multi-temporal aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries. This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management. Existing state-of-the-art algorithms mainly identify the changed pixels by applying homogeneous operations on each input image and comparing the extracted features. However, in changed regions, totally different land-cover distributions often require heterogeneous features extraction procedures w.r.t each input. In this paper, we present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures, which involve areas of various sizes and apply different quantities of parameters to factor in the discrepancy across different land-cover distributions. To better train and evaluate our model, we create a large-scale well-annotated SEmantic Change detectiON Dataset (SECOND), while an Adaptive Threshold Learning (ATL) module and a Separated Kappa (SeK) coefficient are proposed to alleviate the influences of label imbalance in model training and evaluation. The experimental results demonstrate that the proposed model can stably outperform the state-of-the-art algorithms with different encoder backbones.
Changen2: Multi-Temporal Remote Sensing Generative Change Foundation Model
Our understanding of the temporal dynamics of the Earth's surface has been advanced by deep vision models, which often require lots of labeled multi-temporal images for training. However, collecting, preprocessing, and annotating multi-temporal remote sensing images at scale is non-trivial since it is expensive and knowledge-intensive. In this paper, we present change data generators based on generative models, which are cheap and automatic, alleviating these data problems. Our main idea is to simulate a stochastic change process over time. We describe the stochastic change process as a probabilistic graphical model (GPCM), which factorizes the complex simulation problem into two more tractable sub-problems, i.e., change event simulation and semantic change synthesis. To solve these two problems, we present Changen2, a GPCM with a resolution-scalable diffusion transformer which can generate time series of images and their semantic and change labels from labeled or unlabeled single-temporal images. Changen2 is a generative change foundation model that can be trained at scale via self-supervision, and can produce change supervisory signals from unlabeled single-temporal images. Unlike existing foundation models, Changen2 synthesizes change data to train task-specific foundation models for change detection. The resulting model possesses inherent zero-shot change detection capabilities and excellent transferability. Experiments suggest Changen2 has superior spatiotemporal scalability, e.g., Changen2 model trained on 256^2 pixel single-temporal images can yield time series of any length and resolutions of 1,024^2 pixels. Changen2 pre-trained models exhibit superior zero-shot performance (narrowing the performance gap to 3% on LEVIR-CD and approximately 10% on both S2Looking and SECOND, compared to fully supervised counterparts) and transferability across multiple types of change tasks.
Improving Zero-Shot Object-Level Change Detection by Incorporating Visual Correspondence
Detecting object-level changes between two images across possibly different views is a core task in many applications that involve visual inspection or camera surveillance. Existing change-detection approaches suffer from three major limitations: (1) lack of evaluation on image pairs that contain no changes, leading to unreported false positive rates; (2) lack of correspondences (i.e., localizing the regions before and after a change); and (3) poor zero-shot generalization across different domains. To address these issues, we introduce a novel method that leverages change correspondences (a) during training to improve change detection accuracy, and (b) at test time, to minimize false positives. That is, we harness the supervision labels of where an object is added or removed to supervise change detectors, improving their accuracy over previous work by a large margin. Our work is also the first to predict correspondences between pairs of detected changes using estimated homography and the Hungarian algorithm. Our model demonstrates superior performance over existing methods, achieving state-of-the-art results in change detection and change correspondence accuracy across both in-distribution and zero-shot benchmarks.
BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications
Automatic speech recognition (ASR) allows transcribing the communications between air traffic controllers (ATCOs) and aircraft pilots. The transcriptions are used later to extract ATC named entities, e.g., aircraft callsigns. One common challenge is speech activity detection (SAD) and speaker diarization (SD). In the failure condition, two or more segments remain in the same recording, jeopardizing the overall performance. We propose a system that combines SAD and a BERT model to perform speaker change detection and speaker role detection (SRD) by chunking ASR transcripts, i.e., SD with a defined number of speakers together with SRD. The proposed model is evaluated on real-life public ATC databases. Our BERT SD model baseline reaches up to 10% and 20% token-based Jaccard error rate (JER) in public and private ATC databases. We also achieved relative improvements of 32% and 7.7% in JERs and SD error rate (DER), respectively, compared to VBx, a well-known SD system.
Yesterday's News: Benchmarking Multi-Dimensional Out-of-Distribution Generalisation of Misinformation Detection Models
This paper introduces misinfo-general, a benchmark dataset for evaluating misinformation models' ability to perform out-of-distribution generalisation. Misinformation changes rapidly, much quicker than moderators can annotate at scale, resulting in a shift between the training and inference data distributions. As a result, misinformation models need to be able to perform out-of-distribution generalisation, an understudied problem in existing datasets. We identify 6 axes of generalisation-time, event, topic, publisher, political bias, misinformation type-and design evaluation procedures for each. We also analyse some baseline models, highlighting how these fail important desiderata.
Reinforcement-based Display-size Selection for Frugal Satellite Image Change Detection
We introduce a novel interactive satellite image change detection algorithm based on active learning. The proposed method is iterative and consists in frugally probing the user (oracle) about the labels of the most critical images, and according to the oracle's annotations, it updates change detection results. First, we consider a probabilistic framework which assigns to each unlabeled sample a relevance measure modeling how critical is that sample when training change detection functions. We obtain these relevance measures by minimizing an objective function mixing diversity, representativity and uncertainty. These criteria when combined allow exploring different data modes and also refining change detections. Then, we further explore the potential of this objective function, by considering a reinforcement learning approach that finds the best combination of diversity, representativity and uncertainty as well as display-sizes through active learning iterations, leading to better generalization as shown through experiments in interactive satellite image change detection.
ClimDetect: A Benchmark Dataset for Climate Change Detection and Attribution
Detecting and attributing temperature increases due to climate change is crucial for understanding global warming and guiding adaptation strategies. The complexity of distinguishing human-induced climate signals from natural variability has challenged traditional detection and attribution (D&A) approaches, which seek to identify specific "fingerprints" in climate response variables. Deep learning offers potential for discerning these complex patterns in expansive spatial datasets. However, lack of standard protocols has hindered consistent comparisons across studies. We introduce ClimDetect, a standardized dataset of over 816k daily climate snapshots, designed to enhance model accuracy in identifying climate change signals. ClimDetect integrates various input and target variables used in past research, ensuring comparability and consistency. We also explore the application of vision transformers (ViT) to climate data, a novel and modernizing approach in this context. Our open-access data and code serve as a benchmark for advancing climate science through improved model evaluations. ClimDetect is publicly accessible via Huggingface dataet respository at: https://huggingface.co/datasets/ClimDetect/ClimDetect.
Change-Agent: Towards Interactive Comprehensive Remote Sensing Change Interpretation and Analysis
Monitoring changes in the Earth's surface is crucial for understanding natural processes and human impacts, necessitating precise and comprehensive interpretation methodologies. Remote sensing satellite imagery offers a unique perspective for monitoring these changes, leading to the emergence of remote sensing image change interpretation (RSICI) as a significant research focus. Current RSICI technology encompasses change detection and change captioning, each with its limitations in providing comprehensive interpretation. To address this, we propose an interactive Change-Agent, which can follow user instructions to achieve comprehensive change interpretation and insightful analysis, such as change detection and change captioning, change object counting, change cause analysis, etc. The Change-Agent integrates a multi-level change interpretation (MCI) model as the eyes and a large language model (LLM) as the brain. The MCI model contains two branches of pixel-level change detection and semantic-level change captioning, in which the BI-temporal Iterative Interaction (BI3) layer is proposed to enhance the model's discriminative feature representation capabilities. To support the training of the MCI model, we build the LEVIR-MCI dataset with a large number of change masks and captions of changes. Experiments demonstrate the SOTA performance of the MCI model in achieving both change detection and change description simultaneously, and highlight the promising application value of our Change-Agent in facilitating comprehensive interpretation of surface changes, which opens up a new avenue for intelligent remote sensing applications. To facilitate future research, we will make our dataset and codebase of the MCI model and Change-Agent publicly available at https://github.com/Chen-Yang-Liu/Change-Agent
HydroChronos: Forecasting Decades of Surface Water Change
Forecasting surface water dynamics is crucial for water resource management and climate change adaptation. However, the field lacks comprehensive datasets and standardized benchmarks. In this paper, we introduce HydroChronos, a large-scale, multi-modal spatiotemporal dataset for surface water dynamics forecasting designed to address this gap. We couple the dataset with three forecasting tasks. The dataset includes over three decades of aligned Landsat 5 and Sentinel-2 imagery, climate data, and Digital Elevation Models for diverse lakes and rivers across Europe, North America, and South America. We also propose AquaClimaTempo UNet, a novel spatiotemporal architecture with a dedicated climate data branch, as a strong benchmark baseline. Our model significantly outperforms a Persistence baseline for forecasting future water dynamics by +14% and +11% F1 across change detection and direction of change classification tasks, and by +0.1 MAE on the magnitude of change regression. Finally, we conduct an Explainable AI analysis to identify the key climate variables and input channels that influence surface water change, providing insights to inform and guide future modeling efforts.
Vision-Language Agents for Interactive Forest Change Analysis
Modern forest monitoring workflows increasingly benefit from the growing availability of high-resolution satellite imagery and advances in deep learning. Two persistent challenges in this context are accurate pixel-level change detection and meaningful semantic change captioning for complex forest dynamics. While large language models (LLMs) are being adapted for interactive data exploration, their integration with vision-language models (VLMs) for remote sensing image change interpretation (RSICI) remains underexplored. To address this gap, we introduce an LLM-driven agent for integrated forest change analysis that supports natural language querying across multiple RSICI tasks. The proposed system builds upon a multi-level change interpretation (MCI) vision-language backbone with LLM-based orchestration. To facilitate adaptation and evaluation in forest environments, we further introduce the Forest-Change dataset, which comprises bi-temporal satellite imagery, pixel-level change masks, and multi-granularity semantic change captions generated using a combination of human annotation and rule-based methods. Experimental results show that the proposed system achieves mIoU and BLEU-4 scores of 67.10% and 40.17% on the Forest-Change dataset, and 88.13% and 34.41% on LEVIR-MCI-Trees, a tree-focused subset of LEVIR-MCI benchmark for joint change detection and captioning. These results highlight the potential of interactive, LLM-driven RSICI systems to improve accessibility, interpretability, and efficiency of forest change analysis. All data and code are publicly available at https://github.com/JamesBrockUoB/ForestChat.
GS-LTS: 3D Gaussian Splatting-Based Adaptive Modeling for Long-Term Service Robots
3D Gaussian Splatting (3DGS) has garnered significant attention in robotics for its explicit, high fidelity dense scene representation, demonstrating strong potential for robotic applications. However, 3DGS-based methods in robotics primarily focus on static scenes, with limited attention to the dynamic scene changes essential for long-term service robots. These robots demand sustained task execution and efficient scene updates-challenges current approaches fail to meet. To address these limitations, we propose GS-LTS (Gaussian Splatting for Long-Term Service), a 3DGS-based system enabling indoor robots to manage diverse tasks in dynamic environments over time. GS-LTS detects scene changes (e.g., object addition or removal) via single-image change detection, employs a rule-based policy to autonomously collect multi-view observations, and efficiently updates the scene representation through Gaussian editing. Additionally, we propose a simulation-based benchmark that automatically generates scene change data as compact configuration scripts, providing a standardized, user-friendly evaluation benchmark. Experimental results demonstrate GS-LTS's advantages in reconstruction, navigation, and superior scene updates-faster and higher quality than the image training baseline-advancing 3DGS for long-term robotic operations. Code and benchmark are available at: https://vipl-vsu.github.io/3DGS-LTS.
Iterative Object Count Optimization for Text-to-image Diffusion Models
We address a persistent challenge in text-to-image models: accurately generating a specified number of objects. Current models, which learn from image-text pairs, inherently struggle with counting, as training data cannot depict every possible number of objects for any given object. To solve this, we propose optimizing the generated image based on a counting loss derived from a counting model that aggregates an object\'s potential. Employing an out-of-the-box counting model is challenging for two reasons: first, the model requires a scaling hyperparameter for the potential aggregation that varies depending on the viewpoint of the objects, and second, classifier guidance techniques require modified models that operate on noisy intermediate diffusion steps. To address these challenges, we propose an iterated online training mode that improves the accuracy of inferred images while altering the text conditioning embedding and dynamically adjusting hyperparameters. Our method offers three key advantages: (i) it can consider non-derivable counting techniques based on detection models, (ii) it is a zero-shot plug-and-play solution facilitating rapid changes to the counting techniques and image generation methods, and (iii) the optimized counting token can be reused to generate accurate images without additional optimization. We evaluate the generation of various objects and show significant improvements in accuracy. The project page is available at https://ozzafar.github.io/count_token.
UniTS: Unified Time Series Generative Model for Remote Sensing
One of the primary objectives of satellite remote sensing is to capture the complex dynamics of the Earth environment, which encompasses tasks such as reconstructing continuous cloud-free time series images, detecting land cover changes, and forecasting future surface evolution. However, existing methods typically require specialized models tailored to different tasks, lacking unified modeling of spatiotemporal features across multiple time series tasks. In this paper, we propose a Unified Time Series Generative Model (UniTS), a general framework applicable to various time series tasks, including time series reconstruction, time series cloud removal, time series semantic change detection, and time series forecasting. Based on the flow matching generative paradigm, UniTS constructs a deterministic evolution path from noise to targets under the guidance of task-specific conditions, achieving unified modeling of spatiotemporal representations for multiple tasks. The UniTS architecture consists of a diffusion transformer with spatio-temporal blocks, where we design an Adaptive Condition Injector (ACor) to enhance the model's conditional perception of multimodal inputs, enabling high-quality controllable generation. Additionally, we design a Spatiotemporal-aware Modulator (STM) to improve the ability of spatio-temporal blocks to capture complex spatiotemporal dependencies. Furthermore, we construct two high-quality multimodal time series datasets, TS-S12 and TS-S12CR, filling the gap of benchmark datasets for time series cloud removal and forecasting tasks. Extensive experiments demonstrate that UniTS exhibits exceptional generative and cognitive capabilities in both low-level and high-level time series tasks. It significantly outperforms existing methods, particularly when facing challenges such as severe cloud contamination, modality absence, and forecasting phenological variations.
AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities
Geospatial models must adapt to the diversity of Earth observation data in terms of resolutions, scales, and modalities. However, existing approaches expect fixed input configurations, which limits their practical applicability. We propose AnySat, a multimodal model based on joint embedding predictive architecture (JEPA) and resolution-adaptive spatial encoders, allowing us to train a single model on highly heterogeneous data in a self-supervised manner. To demonstrate the advantages of this unified approach, we compile GeoPlex, a collection of 5 multimodal datasets with varying characteristics and 11 distinct sensors. We then train a single powerful model on these diverse datasets simultaneously. Once fine-tuned, we achieve better or near state-of-the-art results on the datasets of GeoPlex and 4 additional ones for 5 environment monitoring tasks: land cover mapping, tree species identification, crop type classification, change detection, and flood segmentation. The code and models are available at https://github.com/gastruc/AnySat.
Practical Collaborative Perception: A Framework for Asynchronous and Multi-Agent 3D Object Detection
Occlusion is a major challenge for LiDAR-based object detection methods. This challenge becomes safety-critical in urban traffic where the ego vehicle must have reliable object detection to avoid collision while its field of view is severely reduced due to the obstruction posed by a large number of road users. Collaborative perception via Vehicle-to-Everything (V2X) communication, which leverages the diverse perspective thanks to the presence at multiple locations of connected agents to form a complete scene representation, is an appealing solution. State-of-the-art V2X methods resolve the performance-bandwidth tradeoff using a mid-collaboration approach where the Bird-Eye View images of point clouds are exchanged so that the bandwidth consumption is lower than communicating point clouds as in early collaboration, and the detection performance is higher than late collaboration, which fuses agents' output, thanks to a deeper interaction among connected agents. While achieving strong performance, the real-world deployment of most mid-collaboration approaches is hindered by their overly complicated architectures, involving learnable collaboration graphs and autoencoder-based compressor/ decompressor, and unrealistic assumptions about inter-agent synchronization. In this work, we devise a simple yet effective collaboration method that achieves a better bandwidth-performance tradeoff than prior state-of-the-art methods while minimizing changes made to the single-vehicle detection models and relaxing unrealistic assumptions on inter-agent synchronization. Experiments on the V2X-Sim dataset show that our collaboration method achieves 98\% of the performance of an early-collaboration method, while only consuming the equivalent bandwidth of a late-collaboration method.
ModelCitizens: Representing Community Voices in Online Safety
Automatic toxic language detection is critical for creating safe, inclusive online spaces. However, it is a highly subjective task, with perceptions of toxic language shaped by community norms and lived experience. Existing toxicity detection models are typically trained on annotations that collapse diverse annotator perspectives into a single ground truth, erasing important context-specific notions of toxicity such as reclaimed language. To address this, we introduce MODELCITIZENS, a dataset of 6.8K social media posts and 40K toxicity annotations across diverse identity groups. To capture the role of conversational context on toxicity, typical of social media posts, we augment MODELCITIZENS posts with LLM-generated conversational scenarios. State-of-the-art toxicity detection tools (e.g. OpenAI Moderation API, GPT-o4-mini) underperform on MODELCITIZENS, with further degradation on context-augmented posts. Finally, we release LLAMACITIZEN-8B and GEMMACITIZEN-12B, LLaMA- and Gemma-based models finetuned on MODELCITIZENS, which outperform GPT-o4-mini by 5.5% on in-distribution evaluations. Our findings highlight the importance of community-informed annotation and modeling for inclusive content moderation. The data, models and code are available at https://github.com/asuvarna31/modelcitizens.
On the Challenges of Using Black-Box APIs for Toxicity Evaluation in Research
Perception of toxicity evolves over time and often differs between geographies and cultural backgrounds. Similarly, black-box commercially available APIs for detecting toxicity, such as the Perspective API, are not static, but frequently retrained to address any unattended weaknesses and biases. We evaluate the implications of these changes on the reproducibility of findings that compare the relative merits of models and methods that aim to curb toxicity. Our findings suggest that research that relied on inherited automatic toxicity scores to compare models and techniques may have resulted in inaccurate findings. Rescoring all models from HELM, a widely respected living benchmark, for toxicity with the recent version of the API led to a different ranking of widely used foundation models. We suggest caution in applying apples-to-apples comparisons between studies and lay recommendations for a more structured approach to evaluating toxicity over time. Code and data are available at https://github.com/for-ai/black-box-api-challenges.
OPTIMUS: Observing Persistent Transformations in Multi-temporal Unlabeled Satellite-data
In the face of pressing environmental issues in the 21st century, monitoring surface changes on Earth is more important than ever. Large-scale remote sensing, such as satellite imagery, is an important tool for this task. However, using supervised methods to detect changes is difficult because of the lack of satellite data annotated with change labels, especially for rare categories of change. Annotation proves challenging due to the sparse occurrence of changes in satellite images. Even within a vast collection of images, only a small fraction may exhibit persistent changes of interest. To address this challenge, we introduce OPTIMUS, a self-supervised learning method based on an intuitive principle: if a model can recover information about the relative order of images in the time series, then that implies that there are long-lasting changes in the images. OPTIMUS demonstrates this principle by using change point detection methods on model outputs in a time series. We demonstrate that OPTIMUS can directly detect interesting changes in satellite images, achieving an improvement in AUROC score from 56.3% to 87.6% at distinguishing changed time series from unchanged ones compared to baselines. Our code and dataset are available at https://huggingface.co/datasets/optimus-change/optimus-dataset/.
Structural Text Segmentation of Legal Documents
The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange
End-to-end speaker segmentation for overlap-aware resegmentation
Speaker segmentation consists in partitioning a conversation between one or more speakers into speaker turns. Usually addressed as the late combination of three sub-tasks (voice activity detection, speaker change detection, and overlapped speech detection), we propose to train an end-to-end segmentation model that does it directly. Inspired by the original end-to-end neural speaker diarization approach (EEND), the task is modeled as a multi-label classification problem using permutation-invariant training. The main difference is that our model operates on short audio chunks (5 seconds) but at a much higher temporal resolution (every 16ms). Experiments on multiple speaker diarization datasets conclude that our model can be used with great success on both voice activity detection and overlapped speech detection. Our proposed model can also be used as a post-processing step, to detect and correctly assign overlapped speech regions. Relative diarization error rate improvement over the best considered baseline (VBx) reaches 17% on AMI, 13% on DIHARD 3, and 13% on VoxConverse.
SpectralGPT: Spectral Foundation Model
The foundation model has recently garnered significant attention due to its potential to revolutionize the field of visual representation learning in a self-supervised manner. While most foundation models are tailored to effectively process RGB images for various visual tasks, there is a noticeable gap in research focused on spectral data, which offers valuable information for scene understanding, especially in remote sensing (RS) applications. To fill this gap, we created for the first time a universal RS foundation model, named SpectralGPT, which is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT). Compared to existing foundation models, SpectralGPT 1) accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data; 2) leverages 3D token generation for spatial-spectral coupling; 3) captures spectrally sequential patterns via multi-target reconstruction; 4) trains on one million spectral RS images, yielding models with over 600 million parameters. Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience across four downstream tasks: single/multi-label scene classification, semantic segmentation, and change detection.
GeoRSMLLM: A Multimodal Large Language Model for Vision-Language Tasks in Geoscience and Remote Sensing
The application of Vision-Language Models (VLMs) in remote sensing (RS) has demonstrated significant potential in traditional tasks such as scene classification, object detection, and image captioning. However, current models, which excel in Referring Expression Comprehension (REC), struggle with tasks involving complex instructions (e.g., exists multiple conditions) or pixel-level operations like segmentation and change detection. In this white paper, we provide a comprehensive hierarchical summary of vision-language tasks in RS, categorized by the varying levels of cognitive capability required. We introduce the Remote Sensing Vision-Language Task Set (RSVLTS), which includes Open-Vocabulary Tasks (OVT), Referring Expression Tasks (RET), and Described Object Tasks (DOT) with increased difficulty, and Visual Question Answering (VQA) aloneside. Moreover, we propose a novel unified data representation using a set-of-points approach for RSVLTS, along with a condition parser and a self-augmentation strategy based on cyclic referring. These features are integrated into the GeoRSMLLM model, and this enhanced model is designed to handle a broad range of tasks of RSVLTS, paving the way for a more generalized solution for vision-language tasks in geoscience and remote sensing.
TEOChat: A Large Vision-Language Assistant for Temporal Earth Observation Data
Large vision and language assistants have enabled new capabilities for interpreting natural images. These approaches have recently been adapted to earth observation data, but they are only able to handle single image inputs, limiting their use for many real-world tasks. In this work, we develop a new vision and language assistant called TEOChat that can engage in conversations about temporal sequences of earth observation data. To train TEOChat, we curate an instruction-following dataset composed of many single image and temporal tasks including building change and damage assessment, semantic change detection, and temporal scene classification. We show that TEOChat can perform a wide variety of spatial and temporal reasoning tasks, substantially outperforming previous vision and language assistants, and even achieving comparable or better performance than specialist models trained to perform these specific tasks. Furthermore, TEOChat achieves impressive zero-shot performance on a change detection and change question answering dataset, outperforms GPT-4o and Gemini 1.5 Pro on multiple temporal tasks, and exhibits stronger single image capabilities than a comparable single EO image instruction-following model. We publicly release our data, models, and code at https://github.com/ermongroup/TEOChat .
Restarted Bayesian Online Change-point Detection for Non-Stationary Markov Decision Processes
We consider the problem of learning in a non-stationary reinforcement learning (RL) environment, where the setting can be fully described by a piecewise stationary discrete-time Markov decision process (MDP). We introduce a variant of the Restarted Bayesian Online Change-Point Detection algorithm (R-BOCPD) that operates on input streams originating from the more general multinomial distribution and provides near-optimal theoretical guarantees in terms of false-alarm rate and detection delay. Based on this, we propose an improved version of the UCRL2 algorithm for MDPs with state transition kernel sampled from a multinomial distribution, which we call R-BOCPD-UCRL2. We perform a finite-time performance analysis and show that R-BOCPD-UCRL2 enjoys a favorable regret bound of Oleft(D O A T K_T logleft (frac{T{delta} right) + K_T log frac{K_T{delta}}{minlimits_ell : KLleft( {theta^{(ell+1)}}midmathbf{theta^{(ell)}}right)}}right), where D is the largest MDP diameter from the set of MDPs defining the piecewise stationary MDP setting, O is the finite number of states (constant over all changes), A is the finite number of actions (constant over all changes), K_T is the number of change points up to horizon T, and theta^{(ell)} is the transition kernel during the interval [c_ell, c_{ell+1}), which we assume to be multinomially distributed over the set of states O. Interestingly, the performance bound does not directly scale with the variation in MDP state transition distributions and rewards, ie. can also model abrupt changes. In practice, R-BOCPD-UCRL2 outperforms the state-of-the-art in a variety of scenarios in synthetic environments. We provide a detailed experimental setup along with a code repository (upon publication) that can be used to easily reproduce our experiments.
HyRet-Change: A hybrid retentive network for remote sensing change detection
Recently convolution and transformer-based change detection (CD) methods provide promising performance. However, it remains unclear how the local and global dependencies interact to effectively alleviate the pseudo changes. Moreover, directly utilizing standard self-attention presents intrinsic limitations including governing global feature representations limit to capture subtle changes, quadratic complexity, and restricted training parallelism. To address these limitations, we propose a Siamese-based framework, called HyRet-Change, which can seamlessly integrate the merits of convolution and retention mechanisms at multi-scale features to preserve critical information and enhance adaptability in complex scenes. Specifically, we introduce a novel feature difference module to exploit both convolutions and multi-head retention mechanisms in a parallel manner to capture complementary information. Furthermore, we propose an adaptive local-global interactive context awareness mechanism that enables mutual learning and enhances discrimination capability through information exchange. We perform experiments on three challenging CD datasets and achieve state-of-the-art performance compared to existing methods. Our source code is publicly available at https://github.com/mustansarfiaz/HyRect-Change.
How to Reduce Change Detection to Semantic Segmentation
Change detection (CD) aims to identify changes that occur in an image pair taken different times. Prior methods devise specific networks from scratch to predict change masks in pixel-level, and struggle with general segmentation problems. In this paper, we propose a new paradigm that reduces CD to semantic segmentation which means tailoring an existing and powerful semantic segmentation network to solve CD. This new paradigm conveniently enjoys the mainstream semantic segmentation techniques to deal with general segmentation problems in CD. Hence we can concentrate on studying how to detect changes. We propose a novel and importance insight that different change types exist in CD and they should be learned separately. Based on it, we devise a module named MTF to extract the change information and fuse temporal features. MTF enjoys high interpretability and reveals the essential characteristic of CD. And most segmentation networks can be adapted to solve the CD problems with our MTF module. Finally, we propose C-3PO, a network to detect changes at pixel-level. C-3PO achieves state-of-the-art performance without bells and whistles. It is simple but effective and can be considered as a new baseline in this field. Our code is at https://github.com/DoctorKey/C-3PO.
Weakly-Supervised Action Localization by Hierarchically-structured Latent Attention Modeling
Weakly-supervised action localization aims to recognize and localize action instancese in untrimmed videos with only video-level labels. Most existing models rely on multiple instance learning(MIL), where the predictions of unlabeled instances are supervised by classifying labeled bags. The MIL-based methods are relatively well studied with cogent performance achieved on classification but not on localization. Generally, they locate temporal regions by the video-level classification but overlook the temporal variations of feature semantics. To address this problem, we propose a novel attention-based hierarchically-structured latent model to learn the temporal variations of feature semantics. Specifically, our model entails two components, the first is an unsupervised change-points detection module that detects change-points by learning the latent representations of video features in a temporal hierarchy based on their rates of change, and the second is an attention-based classification model that selects the change-points of the foreground as the boundaries. To evaluate the effectiveness of our model, we conduct extensive experiments on two benchmark datasets, THUMOS-14 and ActivityNet-v1.3. The experiments show that our method outperforms current state-of-the-art methods, and even achieves comparable performance with fully-supervised methods.
MapFormer: Boosting Change Detection by Using Pre-change Information
Change detection in remote sensing imagery is essential for a variety of applications such as urban planning, disaster management, and climate research. However, existing methods for identifying semantically changed areas overlook the availability of semantic information in the form of existing maps describing features of the earth's surface. In this paper, we leverage this information for change detection in bi-temporal images. We show that the simple integration of the additional information via concatenation of latent representations suffices to significantly outperform state-of-the-art change detection methods. Motivated by this observation, we propose the new task of *Conditional Change Detection*, where pre-change semantic information is used as input next to bi-temporal images. To fully exploit the extra information, we propose *MapFormer*, a novel architecture based on a multi-modal feature fusion module that allows for feature processing conditioned on the available semantic information. We further employ a supervised, cross-modal contrastive loss to guide the learning of visual representations. Our approach outperforms existing change detection methods by an absolute 11.7\% and 18.4\% in terms of binary change IoU on DynamicEarthNet and HRSCD, respectively. Furthermore, we demonstrate the robustness of our approach to the quality of the pre-change semantic information and the absence pre-change imagery. The code is available at https://github.com/mxbh/mapformer.
A Change Detection Reality Check
In recent years, there has been an explosion of proposed change detection deep learning architectures in the remote sensing literature. These approaches claim to offer state-of the-art performance on different standard benchmark datasets. However, has the field truly made significant progress? In this paper we perform experiments which conclude a simple U-Net segmentation baseline without training tricks or complicated architectural changes is still a top performer for the task of change detection.
Weakly Supervised Lesion Detection and Diagnosis for Breast Cancers with Partially Annotated Ultrasound Images
Deep learning (DL) has proven highly effective for ultrasound-based computer-aided diagnosis (CAD) of breast cancers. In an automaticCAD system, lesion detection is critical for the following diagnosis. However, existing DL-based methods generally require voluminous manually-annotated region of interest (ROI) labels and class labels to train both the lesion detection and diagnosis models. In clinical practice, the ROI labels, i.e. ground truths, may not always be optimal for the classification task due to individual experience of sonologists, resulting in the issue of coarse annotation that limits the diagnosis performance of a CAD model. To address this issue, a novel Two-Stage Detection and Diagnosis Network (TSDDNet) is proposed based on weakly supervised learning to enhance diagnostic accuracy of the ultrasound-based CAD for breast cancers. In particular, all the ROI-level labels are considered as coarse labels in the first training stage, and then a candidate selection mechanism is designed to identify optimallesion areas for both the fully and partially annotated samples. It refines the current ROI-level labels in the fully annotated images and the detected ROIs in the partially annotated samples with a weakly supervised manner under the guidance of class labels. In the second training stage, a self-distillation strategy further is further proposed to integrate the detection network and classification network into a unified framework as the final CAD model for joint optimization, which then further improves the diagnosis performance. The proposed TSDDNet is evaluated on a B-mode ultrasound dataset, and the experimental results show that it achieves the best performance on both lesion detection and diagnosis tasks, suggesting promising application potential.
BTCChat: Advancing Remote Sensing Bi-temporal Change Captioning with Multimodal Large Language Model
Bi-temporal satellite imagery supports critical applications such as urbanization monitoring and disaster assessment. Although powerful multimodal large language models~(MLLMs) have been applied in bi-temporal change analysis, previous methods process image pairs through direct concatenation, inadequately modeling temporal correlations and spatial semantic changes. This deficiency hampers visual-semantic alignment in change understanding, thereby constraining the overall effectiveness of current approaches. To address this gap, we propose BTCChat, a multi-temporal MLLM with advanced bi-temporal change understanding capability. BTCChat supports bi-temporal change captioning and retains single-image interpretation capability. To better capture temporal features and spatial semantic changes in image pairs, we design a Change Extraction module. Moreover, to enhance the model's attention to spatial details, we introduce a Prompt Augmentation mechanism, which incorporates contextual clues into the prompt to enhance model performance. Experimental results demonstrate that BTCChat achieves state-of-the-art performance on change captioning and visual question answering tasks. The code is available https://github.com/IntelliSensing/BTCChat{here}.
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery
For high spatial resolution (HSR) remote sensing images, bitemporal supervised learning always dominates change detection using many pairwise labeled bitemporal images. However, it is very expensive and time-consuming to pairwise label large-scale bitemporal HSR remote sensing images. In this paper, we propose single-temporal supervised learning (STAR) for change detection from a new perspective of exploiting object changes in unpaired images as supervisory signals. STAR enables us to train a high-accuracy change detector only using unpaired labeled images and generalize to real-world bitemporal images. To evaluate the effectiveness of STAR, we design a simple yet effective change detector called ChangeStar, which can reuse any deep semantic segmentation architecture by the ChangeMixin module. The comprehensive experimental results show that ChangeStar outperforms the baseline with a large margin under single-temporal supervision and achieves superior performance under bitemporal supervision. Code is available at https://github.com/Z-Zheng/ChangeStar
ChangeViT: Unleashing Plain Vision Transformers for Change Detection
Change detection in remote sensing images is essential for tracking environmental changes on the Earth's surface. Despite the success of vision transformers (ViTs) as backbones in numerous computer vision applications, they remain underutilized in change detection, where convolutional neural networks (CNNs) continue to dominate due to their powerful feature extraction capabilities. In this paper, our study uncovers ViTs' unique advantage in discerning large-scale changes, a capability where CNNs fall short. Capitalizing on this insight, we introduce ChangeViT, a framework that adopts a plain ViT backbone to enhance the performance of large-scale changes. This framework is supplemented by a detail-capture module that generates detailed spatial features and a feature injector that efficiently integrates fine-grained spatial information into high-level semantic learning. The feature integration ensures that ChangeViT excels in both detecting large-scale changes and capturing fine-grained details, providing comprehensive change detection across diverse scales. Without bells and whistles, ChangeViT achieves state-of-the-art performance on three popular high-resolution datasets (i.e., LEVIR-CD, WHU-CD, and CLCD) and one low-resolution dataset (i.e., OSCD), which underscores the unleashed potential of plain ViTs for change detection. Furthermore, thorough quantitative and qualitative analyses validate the efficacy of the introduced modules, solidifying the effectiveness of our approach. The source code is available at https://github.com/zhuduowang/ChangeViT.
Online Neural Networks for Change-Point Detection
Moments when a time series changes its behaviour are called change points. Detection of such points is a well-known problem, which can be found in many applications: quality monitoring of industrial processes, failure detection in complex systems, health monitoring, speech recognition and video analysis. Occurrence of change point implies that the state of the system is altered and its timely detection might help to prevent unwanted consequences. In this paper, we present two online change-point detection approaches based on neural networks. These algorithms demonstrate linear computational complexity and are suitable for change-point detection in large time series. We compare them with the best known algorithms on various synthetic and real world data sets. Experiments show that the proposed methods outperform known approaches.
RT-DETRv4: Painlessly Furthering Real-Time Object Detection with Vision Foundation Models
Real-time object detection has achieved substantial progress through meticulously designed architectures and optimization strategies. However, the pursuit of high-speed inference via lightweight network designs often leads to degraded feature representation, which hinders further performance improvements and practical on-device deployment. In this paper, we propose a cost-effective and highly adaptable distillation framework that harnesses the rapidly evolving capabilities of Vision Foundation Models (VFMs) to enhance lightweight object detectors. Given the significant architectural and learning objective disparities between VFMs and resource-constrained detectors, achieving stable and task-aligned semantic transfer is challenging. To address this, on one hand, we introduce a Deep Semantic Injector (DSI) module that facilitates the integration of high-level representations from VFMs into the deep layers of the detector. On the other hand, we devise a Gradient-guided Adaptive Modulation (GAM) strategy, which dynamically adjusts the intensity of semantic transfer based on gradient norm ratios. Without increasing deployment and inference overhead, our approach painlessly delivers striking and consistent performance gains across diverse DETR-based models, underscoring its practical utility for real-time detection. Our new model family, RT-DETRv4, achieves state-of-the-art results on COCO, attaining AP scores of 49.7/53.5/55.4/57.0 at corresponding speeds of 273/169/124/78 FPS.
A Transformer-Based Siamese Network for Change Detection
This paper presents a transformer-based Siamese network architecture (abbreviated by ChangeFormer) for Change Detection (CD) from a pair of co-registered remote sensing images. Different from recent CD frameworks, which are based on fully convolutional networks (ConvNets), the proposed method unifies hierarchically structured transformer encoder with Multi-Layer Perception (MLP) decoder in a Siamese network architecture to efficiently render multi-scale long-range details required for accurate CD. Experiments on two CD datasets show that the proposed end-to-end trainable ChangeFormer architecture achieves better CD performance than previous counterparts. Our code is available at https://github.com/wgcban/ChangeFormer.
Detection Avoidance Techniques for Large Language Models
The increasing popularity of large language models has not only led to widespread use but has also brought various risks, including the potential for systematically spreading fake news. Consequently, the development of classification systems such as DetectGPT has become vital. These detectors are vulnerable to evasion techniques, as demonstrated in an experimental series: Systematic changes of the generative models' temperature proofed shallow learning-detectors to be the least reliable. Fine-tuning the generative model via reinforcement learning circumvented BERT-based-detectors. Finally, rephrasing led to a >90\% evasion of zero-shot-detectors like DetectGPT, although texts stayed highly similar to the original. A comparison with existing work highlights the better performance of the presented methods. Possible implications for society and further research are discussed.
A Novel Dataset for Flood Detection Robust to Seasonal Changes in Satellite Imagery
This study introduces a novel dataset for segmenting flooded areas in satellite images. After reviewing 77 existing benchmarks utilizing satellite imagery, we identified a shortage of suitable datasets for this specific task. To fill this gap, we collected satellite imagery of the 2019 Midwestern USA floods from Planet Explorer by Planet Labs (Image opyright 2024 Planet Labs PBC). The dataset consists of 10 satellite images per location, each containing both flooded and non-flooded areas. We selected ten locations from each of the five states: Iowa, Kansas, Montana, Nebraska, and South Dakota. The dataset ensures uniform resolution and resizing during data processing. For evaluating semantic segmentation performance, we tested state-of-the-art models in computer vision and remote sensing on our dataset. Additionally, we conducted an ablation study varying window sizes to capture temporal characteristics. Overall, the models demonstrated modest results, suggesting a requirement for future multimodal and temporal learning strategies. The dataset will be publicly available on <https://github.com/youngsunjang/SDSU_MidWest_Flood_2019>.
Robustness and Generalizability of Deepfake Detection: A Study with Diffusion Models
The rise of deepfake images, especially of well-known personalities, poses a serious threat to the dissemination of authentic information. To tackle this, we present a thorough investigation into how deepfakes are produced and how they can be identified. The cornerstone of our research is a rich collection of artificial celebrity faces, titled DeepFakeFace (DFF). We crafted the DFF dataset using advanced diffusion models and have shared it with the community through online platforms. This data serves as a robust foundation to train and test algorithms designed to spot deepfakes. We carried out a thorough review of the DFF dataset and suggest two evaluation methods to gauge the strength and adaptability of deepfake recognition tools. The first method tests whether an algorithm trained on one type of fake images can recognize those produced by other methods. The second evaluates the algorithm's performance with imperfect images, like those that are blurry, of low quality, or compressed. Given varied results across deepfake methods and image changes, our findings stress the need for better deepfake detectors. Our DFF dataset and tests aim to boost the development of more effective tools against deepfakes.
Causal Regime Detection in Energy Markets With Augmented Time Series Structural Causal Models
Energy markets exhibit complex causal relationships between weather patterns, generation technologies, and price formation, with regime changes occurring continuously rather than at discrete break points. Current approaches model electricity prices without explicit causal interpretation or counterfactual reasoning capabilities. We introduce Augmented Time Series Causal Models (ATSCM) for energy markets, extending counterfactual reasoning frameworks to multivariate temporal data with learned causal structure. Our approach models energy systems through interpretable factors (weather, generation mix, demand patterns), rich grid dynamics, and observable market variables. We integrate neural causal discovery to learn time-varying causal graphs without requiring ground truth DAGs. Applied to real-world electricity price data, ATSCM enables novel counterfactual queries such as "What would prices be under different renewable generation scenarios?".
Is Fine-tuning Needed? Pre-trained Language Models Are Near Perfect for Out-of-Domain Detection
Out-of-distribution (OOD) detection is a critical task for reliable predictions over text. Fine-tuning with pre-trained language models has been a de facto procedure to derive OOD detectors with respect to in-distribution (ID) data. Despite its common use, the understanding of the role of fine-tuning and its necessity for OOD detection is largely unexplored. In this paper, we raise the question: is fine-tuning necessary for OOD detection? We present a study investigating the efficacy of directly leveraging pre-trained language models for OOD detection, without any model fine-tuning on the ID data. We compare the approach with several competitive fine-tuning objectives, and offer new insights under various types of distributional shifts. Extensive evaluations on 8 diverse ID-OOD dataset pairs demonstrate near-perfect OOD detection performance (with 0% FPR95 in many cases), strongly outperforming its fine-tuned counterparts. We show that using distance-based detection methods, pre-trained language models are near-perfect OOD detectors when the distribution shift involves a domain change. Furthermore, we study the effect of fine-tuning on OOD detection and identify how to balance ID accuracy with OOD detection performance. Our code is publically available at https://github.com/Uppaal/lm-ood.
SceneEdited: A City-Scale Benchmark for 3D HD Map Updating via Image-Guided Change Detection
Accurate, up-to-date High-Definition (HD) maps are critical for urban planning, infrastructure monitoring, and autonomous navigation. However, these maps quickly become outdated as environments evolve, creating a need for robust methods that not only detect changes but also incorporate them into updated 3D representations. While change detection techniques have advanced significantly, there remains a clear gap between detecting changes and actually updating 3D maps, particularly when relying on 2D image-based change detection. To address this gap, we introduce SceneEdited, the first city-scale dataset explicitly designed to support research on HD map maintenance through 3D point cloud updating. SceneEdited contains over 800 up-to-date scenes covering 73 km of driving and approximate 3 km^2 of urban area, with more than 23,000 synthesized object changes created both manually and automatically across 2000+ out-of-date versions, simulating realistic urban modifications such as missing roadside infrastructure, buildings, overpasses, and utility poles. Each scene includes calibrated RGB images, LiDAR scans, and detailed change masks for training and evaluation. We also provide baseline methods using a foundational image-based structure-from-motion pipeline for updating outdated scenes, as well as a comprehensive toolkit supporting scalability, trackability, and portability for future dataset expansion and unification of out-of-date object annotations. Both the dataset and the toolkit are publicly available at https://github.com/ChadLin9596/ScenePoint-ETK, establising a standardized benchmark for 3D map updating research.
DeltaVLM: Interactive Remote Sensing Image Change Analysis via Instruction-guided Difference Perception
Accurate interpretation of land-cover changes in multi-temporal satellite imagery is critical for real-world scenarios. However, existing methods typically provide only one-shot change masks or static captions, limiting their ability to support interactive, query-driven analysis. In this work, we introduce remote sensing image change analysis (RSICA) as a new paradigm that combines the strengths of change detection and visual question answering to enable multi-turn, instruction-guided exploration of changes in bi-temporal remote sensing images. To support this task, we construct ChangeChat-105k, a large-scale instruction-following dataset, generated through a hybrid rule-based and GPT-assisted process, covering six interaction types: change captioning, classification, quantification, localization, open-ended question answering, and multi-turn dialogues. Building on this dataset, we propose DeltaVLM, an end-to-end architecture tailored for interactive RSICA. DeltaVLM features three innovations: (1) a fine-tuned bi-temporal vision encoder to capture temporal differences; (2) a visual difference perception module with a cross-semantic relation measuring (CSRM) mechanism to interpret changes; and (3) an instruction-guided Q-former to effectively extract query-relevant difference information from visual changes, aligning them with textual instructions. We train DeltaVLM on ChangeChat-105k using a frozen large language model, adapting only the vision and alignment modules to optimize efficiency. Extensive experiments and ablation studies demonstrate that DeltaVLM achieves state-of-the-art performance on both single-turn captioning and multi-turn interactive change analysis, outperforming existing multimodal large language models and remote sensing vision-language models. Code, dataset and pre-trained weights are available at https://github.com/hanlinwu/DeltaVLM.
Pre-trained Language Models as Re-Annotators
Annotation noise is widespread in datasets, but manually revising a flawed corpus is time-consuming and error-prone. Hence, given the prior knowledge in Pre-trained Language Models and the expected uniformity across all annotations, we attempt to reduce annotation noise in the corpus through two tasks automatically: (1) Annotation Inconsistency Detection that indicates the credibility of annotations, and (2) Annotation Error Correction that rectifies the abnormal annotations. We investigate how to acquire semantic sensitive annotation representations from Pre-trained Language Models, expecting to embed the examples with identical annotations to the mutually adjacent positions even without fine-tuning. We proposed a novel credibility score to reveal the likelihood of annotation inconsistencies based on the neighbouring consistency. Then, we fine-tune the Pre-trained Language Models based classifier with cross-validation for annotation correction. The annotation corrector is further elaborated with two approaches: (1) soft labelling by Kernel Density Estimation and (2) a novel distant-peer contrastive loss. We study the re-annotation in relation extraction and create a new manually revised dataset, Re-DocRED, for evaluating document-level re-annotation. The proposed credibility scores show promising agreement with human revisions, achieving a Binary F1 of 93.4 and 72.5 in detecting inconsistencies on TACRED and DocRED respectively. Moreover, the neighbour-aware classifiers based on distant-peer contrastive learning and uncertain labels achieve Macro F1 up to 66.2 and 57.8 in correcting annotations on TACRED and DocRED respectively. These improvements are not merely theoretical: Rather, automatically denoised training sets demonstrate up to 3.6% performance improvement for state-of-the-art relation extraction models.
Towards Generalizable Forgery Detection and Reasoning
Accurate and interpretable detection of AI-generated images is essential for mitigating risks associated with AI misuse. However, the substantial domain gap among generative models makes it challenging to develop a generalizable forgery detection model. Moreover, since every pixel in an AI-generated image is synthesized, traditional saliency-based forgery explanation methods are not well suited for this task. To address these challenges, we formulate detection and explanation as a unified Forgery Detection and Reasoning task (FDR-Task), leveraging Multi-Modal Large Language Models (MLLMs) to provide accurate detection through reliable reasoning over forgery attributes. To facilitate this task, we introduce the Multi-Modal Forgery Reasoning dataset (MMFR-Dataset), a large-scale dataset containing 120K images across 10 generative models, with 378K reasoning annotations on forgery attributes, enabling comprehensive evaluation of the FDR-Task. Furthermore, we propose FakeReasoning, a forgery detection and reasoning framework with three key components: 1) a dual-branch visual encoder that integrates CLIP and DINO to capture both high-level semantics and low-level artifacts; 2) a Forgery-Aware Feature Fusion Module that leverages DINO's attention maps and cross-attention mechanisms to guide MLLMs toward forgery-related clues; 3) a Classification Probability Mapper that couples language modeling and forgery detection, enhancing overall performance. Experiments across multiple generative models demonstrate that FakeReasoning not only achieves robust generalization but also outperforms state-of-the-art methods on both detection and reasoning tasks.
Watermarking Text Generated by Black-Box Language Models
LLMs now exhibit human-like skills in various fields, leading to worries about misuse. Thus, detecting generated text is crucial. However, passive detection methods are stuck in domain specificity and limited adversarial robustness. To achieve reliable detection, a watermark-based method was proposed for white-box LLMs, allowing them to embed watermarks during text generation. The method involves randomly dividing the model vocabulary to obtain a special list and adjusting the probability distribution to promote the selection of words in the list. A detection algorithm aware of the list can identify the watermarked text. However, this method is not applicable in many real-world scenarios where only black-box language models are available. For instance, third-parties that develop API-based vertical applications cannot watermark text themselves because API providers only supply generated text and withhold probability distributions to shield their commercial interests. To allow third-parties to autonomously inject watermarks into generated text, we develop a watermarking framework for black-box language model usage scenarios. Specifically, we first define a binary encoding function to compute a random binary encoding corresponding to a word. The encodings computed for non-watermarked text conform to a Bernoulli distribution, wherein the probability of a word representing bit-1 being approximately 0.5. To inject a watermark, we alter the distribution by selectively replacing words representing bit-0 with context-based synonyms that represent bit-1. A statistical test is then used to identify the watermark. Experiments demonstrate the effectiveness of our method on both Chinese and English datasets. Furthermore, results under re-translation, polishing, word deletion, and synonym substitution attacks reveal that it is arduous to remove the watermark without compromising the original semantics.
DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks
Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE .
Explainable Synthetic Image Detection through Diffusion Timestep Ensembling
Recent advances in diffusion models have enabled the creation of deceptively real images, posing significant security risks when misused. In this study, we empirically show that different timesteps of DDIM inversion reveal varying subtle distinctions between synthetic and real images that are extractable for detection, in the forms of such as Fourier power spectrum high-frequency discrepancies and inter-pixel variance distributions. Based on these observations, we propose a novel synthetic image detection method that directly utilizes features of intermediately noised images by training an ensemble on multiple noised timesteps, circumventing conventional reconstruction-based strategies. To enhance human comprehension, we introduce a metric-grounded explanation generation and refinement module to identify and explain AI-generated flaws. Additionally, we construct the GenHard and GenExplain benchmarks to provide detection samples of greater difficulty and high-quality rationales for fake images. Extensive experiments show that our method achieves state-of-the-art performance with 98.91% and 95.89% detection accuracy on regular and challenging samples respectively, and demonstrates generalizability and robustness. Our code and datasets are available at https://github.com/Shadowlized/ESIDE.
DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In Machine-Assisted Skin Disease Detection
Skin tone as a demographic bias and inconsistent human labeling poses challenges in dermatology AI. We take another angle to investigate color contrast's impact, beyond skin tones, on malignancy detection in skin disease datasets: We hypothesize that in addition to skin tones, the color difference between the lesion area and skin also plays a role in malignancy detection performance of dermatology AI models. To study this, we first propose a robust labeling method to quantify color contrast scores of each image and validate our method by showing small labeling variations. More importantly, applying our method to the only diverse-skin tone and pathologically-confirmed skin disease dataset DDI, yields DDI-CoCo Dataset, and we observe a performance gap between the high and low color difference groups. This disparity remains consistent across various state-of-the-art (SoTA) image classification models, which supports our hypothesis. Furthermore, we study the interaction between skin tone and color difference effects and suggest that color difference can be an additional reason behind model performance bias between skin tones. Our work provides a complementary angle to dermatology AI for improving skin disease detection.
Cascade RetinaNet: Maintaining Consistency for Single-Stage Object Detection
Recent researches attempt to improve the detection performance by adopting the idea of cascade for single-stage detectors. In this paper, we analyze and discover that inconsistency is the major factor limiting the performance. The refined anchors are associated with the feature extracted from the previous location and the classifier is confused by misaligned classification and localization. Further, we point out two main designing rules for the cascade manner: improving consistency between classification confidence and localization performance, and maintaining feature consistency between different stages. A multistage object detector named Cas-RetinaNet, is then proposed for reducing the misalignments. It consists of sequential stages trained with increasing IoU thresholds for improving the correlation, and a novel Feature Consistency Module for mitigating the feature inconsistency. Experiments show that our proposed Cas-RetinaNet achieves stable performance gains across different models and input scales. Specifically, our method improves RetinaNet from 39.1 AP to 41.1 AP on the challenging MS COCO dataset without any bells or whistles.
RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer
In this report, we present RT-DETRv2, an improved Real-Time DEtection TRansformer (RT-DETR). RT-DETRv2 builds upon the previous state-of-the-art real-time detector, RT-DETR, and opens up a set of bag-of-freebies for flexibility and practicality, as well as optimizing the training strategy to achieve enhanced performance. To improve the flexibility, we suggest setting a distinct number of sampling points for features at different scales in the deformable attention to achieve selective multi-scale feature extraction by the decoder. To enhance practicality, we propose an optional discrete sampling operator to replace the grid_sample operator that is specific to RT-DETR compared to YOLOs. This removes the deployment constraints typically associated with DETRs. For the training strategy, we propose dynamic data augmentation and scale-adaptive hyperparameters customization to improve performance without loss of speed. Source code and pre-trained models will be available at https://github.com/lyuwenyu/RT-DETR.
Revisiting Logit Distributions for Reliable Out-of-Distribution Detection
Out-of-distribution (OOD) detection is critical for ensuring the reliability of deep learning models in open-world applications. While post-hoc methods are favored for their efficiency and ease of deployment, existing approaches often underexploit the rich information embedded in the model's logits space. In this paper, we propose LogitGap, a novel post-hoc OOD detection method that explicitly exploits the relationship between the maximum logit and the remaining logits to enhance the separability between in-distribution (ID) and OOD samples. To further improve its effectiveness, we refine LogitGap by focusing on a more compact and informative subset of the logit space. Specifically, we introduce a training-free strategy that automatically identifies the most informative logits for scoring. We provide both theoretical analysis and empirical evidence to validate the effectiveness of our approach. Extensive experiments on both vision-language and vision-only models demonstrate that LogitGap consistently achieves state-of-the-art performance across diverse OOD detection scenarios and benchmarks. Code is available at https://github.com/GIT-LJc/LogitGap.
UMT: Unified Multi-modal Transformers for Joint Video Moment Retrieval and Highlight Detection
Finding relevant moments and highlights in videos according to natural language queries is a natural and highly valuable common need in the current video content explosion era. Nevertheless, jointly conducting moment retrieval and highlight detection is an emerging research topic, even though its component problems and some related tasks have already been studied for a while. In this paper, we present the first unified framework, named Unified Multi-modal Transformers (UMT), capable of realizing such joint optimization while can also be easily degenerated for solving individual problems. As far as we are aware, this is the first scheme to integrate multi-modal (visual-audio) learning for either joint optimization or the individual moment retrieval task, and tackles moment retrieval as a keypoint detection problem using a novel query generator and query decoder. Extensive comparisons with existing methods and ablation studies on QVHighlights, Charades-STA, YouTube Highlights, and TVSum datasets demonstrate the effectiveness, superiority, and flexibility of the proposed method under various settings. Source code and pre-trained models are available at https://github.com/TencentARC/UMT.
Text Injection for Capitalization and Turn-Taking Prediction in Speech Models
Text injection for automatic speech recognition (ASR), wherein unpaired text-only data is used to supplement paired audio-text data, has shown promising improvements for word error rate. This study examines the use of text injection for auxiliary tasks, which are the non-ASR tasks often performed by an E2E model. In this work, we use joint end-to-end and internal language model training (JEIT) as our text injection algorithm to train an ASR model which performs two auxiliary tasks. The first is capitalization, which is a de-normalization task. The second is turn-taking prediction, which attempts to identify whether a user has completed their conversation turn in a digital assistant interaction. We show results demonstrating that our text injection method boosts capitalization performance for long-tail data, and improves turn-taking detection recall.
EVADE: Multimodal Benchmark for Evasive Content Detection in E-Commerce Applications
E-commerce platforms increasingly rely on Large Language Models (LLMs) and Vision-Language Models (VLMs) to detect illicit or misleading product content. However, these models remain vulnerable to evasive content: inputs (text or images) that superficially comply with platform policies while covertly conveying prohibited claims. Unlike traditional adversarial attacks that induce overt failures, evasive content exploits ambiguity and context, making it far harder to detect. Existing robustness benchmarks provide little guidance for this demanding, real-world challenge. We introduce EVADE, the first expert-curated, Chinese, multimodal benchmark specifically designed to evaluate foundation models on evasive content detection in e-commerce. The dataset contains 2,833 annotated text samples and 13,961 images spanning six demanding product categories, including body shaping, height growth, and health supplements. Two complementary tasks assess distinct capabilities: Single-Violation, which probes fine-grained reasoning under short prompts, and All-in-One, which tests long-context reasoning by merging overlapping policy rules into unified instructions. Notably, the All-in-One setting significantly narrows the performance gap between partial and full-match accuracy, suggesting that clearer rule definitions improve alignment between human and model judgment. We benchmark 26 mainstream LLMs and VLMs and observe substantial performance gaps: even state-of-the-art models frequently misclassify evasive samples. By releasing EVADE and strong baselines, we provide the first rigorous standard for evaluating evasive-content detection, expose fundamental limitations in current multimodal reasoning, and lay the groundwork for safer and more transparent content moderation systems in e-commerce. The dataset is publicly available at https://huggingface.co/datasets/koenshen/EVADE-Bench.
FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models
The rapid development of large language model (LLM) evaluation methodologies and datasets has led to a profound challenge: integrating state-of-the-art evaluation techniques cost-effectively while ensuring reliability, reproducibility, and efficiency. Currently, there is a notable absence of a unified and adaptable framework that seamlessly integrates various evaluation approaches. Moreover, the reliability of evaluation findings is often questionable due to potential data contamination, with the evaluation efficiency commonly overlooked when facing the substantial costs associated with LLM inference. In response to these challenges, we introduce FreeEval, a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of LLMs. Firstly, FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies, encompassing dynamic evaluation that demand sophisticated LLM interactions. Secondly, the framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules in the platform, enhance the fairness of the evaluation outcomes. Lastly, FreeEval is designed with a high-performance infrastructure, including distributed computation and caching strategies, enabling extensive evaluations across multi-node, multi-GPU clusters for open-source and proprietary LLMs.
Detecting Any Human-Object Interaction Relationship: Universal HOI Detector with Spatial Prompt Learning on Foundation Models
Human-object interaction (HOI) detection aims to comprehend the intricate relationships between humans and objects, predicting <human, action, object> triplets, and serving as the foundation for numerous computer vision tasks. The complexity and diversity of human-object interactions in the real world, however, pose significant challenges for both annotation and recognition, particularly in recognizing interactions within an open world context. This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs). The proposed method is dubbed as \textbf{UniHOI}. We conduct a deep analysis of the three hierarchical features inherent in visual HOI detectors and propose a method for high-level relation extraction aimed at VL foundation models, which we call HO prompt-based learning. Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image. Furthermore, we utilize a LLM (i.e. GPT) for interaction interpretation, generating a richer linguistic understanding for complex HOIs. For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence. Our efficient architecture design and learning methods effectively unleash the potential of the VL foundation models and LLMs, allowing UniHOI to surpass all existing methods with a substantial margin, under both supervised and zero-shot settings. The code and pre-trained weights are available at: https://github.com/Caoyichao/UniHOI.
Re-mine, Learn and Reason: Exploring the Cross-modal Semantic Correlations for Language-guided HOI detection
Human-Object Interaction (HOI) detection is a challenging computer vision task that requires visual models to address the complex interactive relationship between humans and objects and predict HOI triplets. Despite the challenges posed by the numerous interaction combinations, they also offer opportunities for multimodal learning of visual texts. In this paper, we present a systematic and unified framework (RmLR) that enhances HOI detection by incorporating structured text knowledge. Firstly, we qualitatively and quantitatively analyze the loss of interaction information in the two-stage HOI detector and propose a re-mining strategy to generate more comprehensive visual representation.Secondly, we design more fine-grained sentence- and word-level alignment and knowledge transfer strategies to effectively address the many-to-many matching problem between multiple interactions and multiple texts.These strategies alleviate the matching confusion problem that arises when multiple interactions occur simultaneously, thereby improving the effectiveness of the alignment process. Finally, HOI reasoning by visual features augmented with textual knowledge substantially improves the understanding of interactions. Experimental results illustrate the effectiveness of our approach, where state-of-the-art performance is achieved on public benchmarks. We further analyze the effects of different components of our approach to provide insights into its efficacy.
KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models
Automatic evaluation methods for large language models (LLMs) are hindered by data contamination, leading to inflated assessments of their effectiveness. Existing strategies, which aim to detect contaminated texts, focus on quantifying contamination status instead of accurately gauging model performance. In this paper, we introduce KIEval, a Knowledge-grounded Interactive Evaluation framework, which incorporates an LLM-powered "interactor" role for the first time to accomplish a dynamic contamination-resilient evaluation. Starting with a question in a conventional LLM benchmark involving domain-specific knowledge, KIEval utilizes dynamically generated, multi-round, and knowledge-focused dialogues to determine whether a model's response is merely a recall of benchmark answers or demonstrates a deep comprehension to apply knowledge in more complex conversations. Extensive experiments on seven leading LLMs across five datasets validate KIEval's effectiveness and generalization. We also reveal that data contamination brings no contribution or even negative effect to models' real-world applicability and understanding, and existing contamination detection methods for LLMs can only identify contamination in pre-training but not during supervised fine-tuning.
SSL4EO-L: Datasets and Foundation Models for Landsat Imagery
The Landsat program is the longest-running Earth observation program in history, with 50+ years of data acquisition by 8 satellites. The multispectral imagery captured by sensors onboard these satellites is critical for a wide range of scientific fields. Despite the increasing popularity of deep learning and remote sensing, the majority of researchers still use decision trees and random forests for Landsat image analysis due to the prevalence of small labeled datasets and lack of foundation models. In this paper, we introduce SSL4EO-L, the first ever dataset designed for Self-Supervised Learning for Earth Observation for the Landsat family of satellites (including 3 sensors and 2 product levels) and the largest Landsat dataset in history (5M image patches). Additionally, we modernize and re-release the L7 Irish and L8 Biome cloud detection datasets, and introduce the first ML benchmark datasets for Landsats 4-5 TM and Landsat 7 ETM+ SR. Finally, we pre-train the first foundation models for Landsat imagery using SSL4EO-L and evaluate their performance on multiple semantic segmentation tasks. All datasets and model weights are available via the TorchGeo (https://github.com/microsoft/torchgeo) library, making reproducibility and experimentation easy, and enabling scientific advancements in the burgeoning field of remote sensing for a multitude of downstream applications.
Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control. Given a training corpus and control criteria formulated as a sequence-level constraint on model outputs, our method fine-tunes the LLM on the training corpus while enhancing constraint satisfaction with minimal impact on its utility and generation quality. Specifically, our approach regularizes the LLM training by penalizing the KL divergence between the desired output distribution, which satisfies the constraints, and the LLM's posterior. This regularization term can be approximated by an auxiliary model trained to decompose the sequence-level constraints into token-level guidance, allowing the term to be measured by a closed-form formulation. To further improve efficiency, we design a parallel scheme for concurrently updating both the LLM and the auxiliary model. We evaluate the empirical performance of our approach by controlling the toxicity when training an LLM. We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
Red Teaming Language Model Detectors with Language Models
The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent works have proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems.
FishEye8K: A Benchmark and Dataset for Fisheye Camera Object Detection
With the advance of AI, road object detection has been a prominent topic in computer vision, mostly using perspective cameras. Fisheye lens provides omnidirectional wide coverage for using fewer cameras to monitor road intersections, however with view distortions. To our knowledge, there is no existing open dataset prepared for traffic surveillance on fisheye cameras. This paper introduces an open FishEye8K benchmark dataset for road object detection tasks, which comprises 157K bounding boxes across five classes (Pedestrian, Bike, Car, Bus, and Truck). In addition, we present benchmark results of State-of-The-Art (SoTA) models, including variations of YOLOv5, YOLOR, YOLO7, and YOLOv8. The dataset comprises 8,000 images recorded in 22 videos using 18 fisheye cameras for traffic monitoring in Hsinchu, Taiwan, at resolutions of 1080times1080 and 1280times1280. The data annotation and validation process were arduous and time-consuming, due to the ultra-wide panoramic and hemispherical fisheye camera images with large distortion and numerous road participants, particularly people riding scooters. To avoid bias, frames from a particular camera were assigned to either the training or test sets, maintaining a ratio of about 70:30 for both the number of images and bounding boxes in each class. Experimental results show that YOLOv8 and YOLOR outperform on input sizes 640times640 and 1280times1280, respectively. The dataset will be available on GitHub with PASCAL VOC, MS COCO, and YOLO annotation formats. The FishEye8K benchmark will provide significant contributions to the fisheye video analytics and smart city applications.
