Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeReliable Reasoning Beyond Natural Language
Despite their linguistic competence, Large Language models (LLMs) often exhibit limitations in their ability to reason reliably and flexibly. To address this, we propose a neurosymbolic approach that prompts LLMs to extract and encode all relevant information from a problem statement as logical code statements, and then use a logic programming language (Prolog) to conduct the iterative computations of explicit deductive reasoning. Our approach significantly enhances the performance of LLMs on the standard mathematical reasoning benchmark, GSM8k, and the Navigate dataset from the BIG-bench dataset. Additionally, we introduce a novel dataset, the Non-Linear Reasoning (NLR) dataset, consisting of 55 unique word problems that target the shortcomings of the next token prediction paradigm of LLMs and require complex non-linear reasoning but only basic arithmetic skills to solve. Our findings demonstrate that the integration of Prolog enables LLMs to achieve high performance on the NLR dataset, which even the most advanced language models (including GPT4) fail to solve using text only.
BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models
The rapid development of Large Language Models (LLMs) and the emergence of novel abilities with scale have necessitated the construction of holistic, diverse and challenging benchmarks such as HELM and BIG-bench. However, at the moment, most of these benchmarks focus only on performance in English and evaluations that include Southeast Asian (SEA) languages are few in number. We therefore propose BHASA, a holistic linguistic and cultural evaluation suite for LLMs in SEA languages. It comprises three components: (1) a NLP benchmark covering eight tasks across Natural Language Understanding (NLU), Generation (NLG) and Reasoning (NLR) tasks, (2) LINDSEA, a linguistic diagnostic toolkit that spans the gamut of linguistic phenomena including syntax, semantics and pragmatics, and (3) a cultural diagnostics dataset that probes for both cultural representation and sensitivity. For this preliminary effort, we implement the NLP benchmark only for Indonesian, Vietnamese, Thai and Tamil, and we only include Indonesian and Tamil for LINDSEA and the cultural diagnostics dataset. As GPT-4 is purportedly one of the best-performing multilingual LLMs at the moment, we use it as a yardstick to gauge the capabilities of LLMs in the context of SEA languages. Our initial experiments on GPT-4 with BHASA find it lacking in various aspects of linguistic capabilities, cultural representation and sensitivity in the targeted SEA languages. BHASA is a work in progress and will continue to be improved and expanded in the future. The repository for this paper can be found at: https://github.com/aisingapore/BHASA
Natural Language Reasoning, A Survey
This survey paper proposes a clearer view of natural language reasoning in the field of Natural Language Processing (NLP), both conceptually and practically. Conceptually, we provide a distinct definition for natural language reasoning in NLP, based on both philosophy and NLP scenarios, discuss what types of tasks require reasoning, and introduce a taxonomy of reasoning. Practically, we conduct a comprehensive literature review on natural language reasoning in NLP, mainly covering classical logical reasoning, natural language inference, multi-hop question answering, and commonsense reasoning. The paper also identifies and views backward reasoning, a powerful paradigm for multi-step reasoning, and introduces defeasible reasoning as one of the most important future directions in natural language reasoning research. We focus on single-modality unstructured natural language text, excluding neuro-symbolic techniques and mathematical reasoning.
Stress Test Evaluation for Natural Language Inference
Natural language inference (NLI) is the task of determining if a natural language hypothesis can be inferred from a given premise in a justifiable manner. NLI was proposed as a benchmark task for natural language understanding. Existing models perform well at standard datasets for NLI, achieving impressive results across different genres of text. However, the extent to which these models understand the semantic content of sentences is unclear. In this work, we propose an evaluation methodology consisting of automatically constructed "stress tests" that allow us to examine whether systems have the ability to make real inferential decisions. Our evaluation of six sentence-encoder models on these stress tests reveals strengths and weaknesses of these models with respect to challenging linguistic phenomena, and suggests important directions for future work in this area.
Natural Language Inference in Context -- Investigating Contextual Reasoning over Long Texts
Natural language inference (NLI) is a fundamental NLP task, investigating the entailment relationship between two texts. Popular NLI datasets present the task at sentence-level. While adequate for testing semantic representations, they fall short for testing contextual reasoning over long texts, which is a natural part of the human inference process. We introduce ConTRoL, a new dataset for ConTextual Reasoning over Long texts. Consisting of 8,325 expert-designed "context-hypothesis" pairs with gold labels, ConTRoL is a passage-level NLI dataset with a focus on complex contextual reasoning types such as logical reasoning. It is derived from competitive selection and recruitment test (verbal reasoning test) for police recruitment, with expert level quality. Compared with previous NLI benchmarks, the materials in ConTRoL are much more challenging, involving a range of reasoning types. Empirical results show that state-of-the-art language models perform by far worse than educated humans. Our dataset can also serve as a testing-set for downstream tasks like Checking Factual Correctness of Summaries.
Towards Reasoning in Large Language Models: A Survey
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models
Logical reasoning is fundamental for humans yet presents a substantial challenge in the domain of Artificial Intelligence. Initially, researchers used Knowledge Representation and Reasoning (KR) systems that did not scale and required non trivial manual effort. Recently, the emergence of large language models (LLMs) has demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems. Consequently, there is a growing interest in using LLMs for logical reasoning via natural language. This work strives to understand the proficiency of LLMs in logical reasoning by offering a brief review of the latest progress in this area; with a focus on the logical reasoning datasets, tasks, and the methods adopted to utilize LLMs for reasoning. To offer a thorough analysis, we have compiled a benchmark titled LogiGLUE. This includes 24 varied datasets encompassing deductive, abductive, and inductive reasoning. We have standardized these datasets into Seq2Seq tasks to facilitate straightforward training and evaluation for future research. Utilizing LogiGLUE as a foundation, we have trained an instruction fine tuned language model, resulting in LogiT5. We study single task training, multi task training, and a chain of thought knowledge distillation fine tuning technique to assess the performance of model across the different logical reasoning categories. By this comprehensive process, we aim to shed light on the capabilities and potential pathways for enhancing logical reasoning proficiency in LLMs, paving the way for more advanced and nuanced developments in this critical field.
Can Transformers Reason in Fragments of Natural Language?
State-of-the-art deep-learning-based approaches to Natural Language Processing (NLP) are credited with various capabilities that involve reasoning with natural language texts. In this paper we carry out a large-scale empirical study investigating the detection of formally valid inferences in controlled fragments of natural language for which the satisfiability problem becomes increasingly complex. We find that, while transformer-based language models perform surprisingly well in these scenarios, a deeper analysis re-veals that they appear to overfit to superficial patterns in the data rather than acquiring the logical principles governing the reasoning in these fragments.
DocNLI: A Large-scale Dataset for Document-level Natural Language Inference
Natural language inference (NLI) is formulated as a unified framework for solving various NLP problems such as relation extraction, question answering, summarization, etc. It has been studied intensively in the past few years thanks to the availability of large-scale labeled datasets. However, most existing studies focus on merely sentence-level inference, which limits the scope of NLI's application in downstream NLP problems. This work presents DocNLI -- a newly-constructed large-scale dataset for document-level NLI. DocNLI is transformed from a broad range of NLP problems and covers multiple genres of text. The premises always stay in the document granularity, whereas the hypotheses vary in length from single sentences to passages with hundreds of words. Additionally, DocNLI has pretty limited artifacts which unfortunately widely exist in some popular sentence-level NLI datasets. Our experiments demonstrate that, even without fine-tuning, a model pretrained on DocNLI shows promising performance on popular sentence-level benchmarks, and generalizes well to out-of-domain NLP tasks that rely on inference at document granularity. Task-specific fine-tuning can bring further improvements. Data, code, and pretrained models can be found at https://github.com/salesforce/DocNLI.
LLMs for Relational Reasoning: How Far are We?
Large language models (LLMs) have revolutionized many areas (e.g. natural language processing, software engineering, etc.) by achieving state-of-the-art performance on extensive downstream tasks. Aiming to achieve robust and general artificial intelligence, there has been a surge of interest in investigating the reasoning ability of the LLMs. Whereas the textual and numerical reasoning benchmarks adopted by previous works are rather shallow and simple, it is hard to conclude that the LLMs possess strong reasoning ability by merely achieving positive results on these benchmarks. Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems that require common-sense planning by evaluating their performance on the reinforcement learning benchmarks. In this work, we conduct an in-depth assessment of several state-of-the-art LLMs' reasoning ability based on the inductive logic programming (ILP) benchmark, which is broadly recognized as a representative and challenging measurement for evaluating logic program induction/synthesis systems as it requires inducing strict cause-effect logic to achieve robust deduction on independent and identically distributed (IID) and out-of-distribution (OOD) test samples. Our evaluations illustrate that compared with the neural program induction systems which are much smaller in model size, the state-of-the-art LLMs are much poorer in terms of reasoning ability by achieving much lower performance and generalization using either natural language prompting or truth-value matrix prompting.
Verification and Refinement of Natural Language Explanations through LLM-Symbolic Theorem Proving
Natural language explanations represent a proxy for evaluating explanation-based and multi-step Natural Language Inference (NLI) models. However, assessing the validity of explanations for NLI is challenging as it typically involves the crowd-sourcing of apposite datasets, a process that is time-consuming and prone to logical errors. To address existing limitations, this paper investigates the verification and refinement of natural language explanations through the integration of Large Language Models (LLMs) and Theorem Provers (TPs). Specifically, we present a neuro-symbolic framework, named Explanation-Refiner, that integrates TPs with LLMs to generate and formalise explanatory sentences and suggest potential inference strategies for NLI. In turn, the TP is employed to provide formal guarantees on the logical validity of the explanations and to generate feedback for subsequent improvements. We demonstrate how Explanation-Refiner can be jointly used to evaluate explanatory reasoning, autoformalisation, and error correction mechanisms of state-of-the-art LLMs as well as to automatically enhance the quality of explanations of variable complexity in different domains.
Don't "Overthink" Passage Reranking: Is Reasoning Truly Necessary?
With the growing success of reasoning models across complex natural language tasks, researchers in the Information Retrieval (IR) community have begun exploring how similar reasoning capabilities can be integrated into passage rerankers built on Large Language Models (LLMs). These methods typically employ an LLM to produce an explicit, step-by-step reasoning process before arriving at a final relevance prediction. But, does reasoning actually improve reranking accuracy? In this paper, we dive deeper into this question, studying the impact of the reasoning process by comparing reasoning-based pointwise rerankers (ReasonRR) to standard, non-reasoning pointwise rerankers (StandardRR) under identical training conditions, and observe that StandardRR generally outperforms ReasonRR. Building on this observation, we then study the importance of reasoning to ReasonRR by disabling its reasoning process (ReasonRR-NoReason), and find that ReasonRR-NoReason is surprisingly more effective than ReasonRR. Examining the cause of this result, our findings reveal that reasoning-based rerankers are limited by the LLM's reasoning process, which pushes it toward polarized relevance scores and thus fails to consider the partial relevance of passages, a key factor for the accuracy of pointwise rerankers.
Large Language Models Are Not Strong Abstract Reasoners
Large Language Models have shown tremendous performance on a large variety of natural language processing tasks, ranging from text comprehension to common sense reasoning. However, the mechanisms responsible for this success remain opaque, and it is unclear whether LLMs can achieve human-like cognitive capabilities or whether these models are still fundamentally circumscribed. Abstract reasoning is a fundamental task for cognition, consisting of finding and applying a general pattern from few data. Evaluating deep neural architectures on this task could give insight into their potential limitations regarding reasoning and their broad generalisation abilities, yet this is currently an under-explored area. In this paper, we introduce a new benchmark for evaluating language models beyond memorization on abstract reasoning tasks. We perform extensive evaluations of state-of-the-art LLMs, showing that they currently achieve very limited performance in contrast with other natural language tasks, and we examine the reasons for this difference. We apply techniques that have been shown to improve performance on other NLP tasks and show that their impact on abstract reasoning is limited.
Let's Reason Formally: Natural-Formal Hybrid Reasoning Enhances LLM's Math Capability
Enhancing the mathematical reasoning capabilities of LLMs has garnered significant attention in both the mathematical and computer science communities. Recent works have made substantial progress in both Natural Language (NL) reasoning and Formal Language (FL) reasoning by leveraging the potential of pure Reinforcement Learning (RL) methods on base models. However, RL approaches struggle to impart new capabilities not presented in the base model, highlighting the need to integrate more knowledge like FL into NL math reasoning effectively. Yet, this integration is challenging due to inherent disparities in problem structure and reasoning format between NL and FL. To address these challenges, we introduce **NL-FL HybridReasoning**, an end-to-end framework designed to incorporate the FL expert into NL math problem-solving. To bridge the NL and FL input format gap, we propose the *NL-FL Problem Alignment* method, which reformulates the Question-Answering (QA) problems in NL as existence theorems in FL. Subsequently, the *Mixed Problem Input* technique we provide enables the FL reasoner to handle both QA and existence problems concurrently. Lastly, we mitigate the NL and FL output format gap in reasoning through an LLM-based *Answer Extraction* mechanism. Comprehensive experiments demonstrate that the **HybridReasoning** framework achieves **89.80%** and **84.34%** accuracy rates on the MATH-500 and the AMC benchmarks, surpassing the NL baseline by 4.60% and 4.82%, respectively. Notably, some problems resolved by our framework remain unsolved by the NL baseline model even under a larger number of trials.
Factoring Statutory Reasoning as Language Understanding Challenges
Statutory reasoning is the task of determining whether a legal statute, stated in natural language, applies to the text description of a case. Prior work introduced a resource that approached statutory reasoning as a monolithic textual entailment problem, with neural baselines performing nearly at-chance. To address this challenge, we decompose statutory reasoning into four types of language-understanding challenge problems, through the introduction of concepts and structure found in Prolog programs. Augmenting an existing benchmark, we provide annotations for the four tasks, and baselines for three of them. Models for statutory reasoning are shown to benefit from the additional structure, improving on prior baselines. Further, the decomposition into subtasks facilitates finer-grained model diagnostics and clearer incremental progress.
Logical Reasoning over Natural Language as Knowledge Representation: A Survey
Logical reasoning is central to human cognition and intelligence. Past research of logical reasoning within AI uses formal language as knowledge representation~(and symbolic reasoners). However, reasoning with formal language has proved challenging~(e.g., brittleness and knowledge-acquisition bottleneck). This paper provides a comprehensive overview on a new paradigm of logical reasoning, which uses natural language as knowledge representation~(and pretrained language models as reasoners), including philosophical definition and categorization of logical reasoning, advantages of the new paradigm, benchmarks and methods, challenges of the new paradigm, desirable tasks & methods in the future, and relation to related NLP fields. This new paradigm is promising since it not only alleviates many challenges of formal representation but also has advantages over end-to-end neural methods.
Language Models as Inductive Reasoners
Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.
Advancing Reasoning in Large Language Models: Promising Methods and Approaches
Large Language Models (LLMs) have succeeded remarkably in various natural language processing (NLP) tasks, yet their reasoning capabilities remain a fundamental challenge. While LLMs exhibit impressive fluency and factual recall, their ability to perform complex reasoning-spanning logical deduction, mathematical problem-solving, commonsense inference, and multi-step reasoning-often falls short of human expectations. This survey provides a comprehensive review of emerging techniques enhancing reasoning in LLMs. We categorize existing methods into key approaches, including prompting strategies (e.g., Chain-of-Thought reasoning, Self-Consistency, and Tree-of-Thought reasoning), architectural innovations (e.g., retrieval-augmented models, modular reasoning networks, and neuro-symbolic integration), and learning paradigms (e.g., fine-tuning with reasoning-specific datasets, reinforcement learning, and self-supervised reasoning objectives). Additionally, we explore evaluation frameworks used to assess reasoning in LLMs and highlight open challenges, such as hallucinations, robustness, and reasoning generalization across diverse tasks. By synthesizing recent advancements, this survey aims to provide insights into promising directions for future research and practical applications of reasoning-augmented LLMs.
Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024)
Reasoning is an essential component of human intelligence as it plays a fundamental role in our ability to think critically, support responsible decisions, and solve challenging problems. Traditionally, AI has addressed reasoning in the context of logic-based representations of knowledge. However, the recent leap forward in natural language processing, with the emergence of language models based on transformers, is hinting at the possibility that these models exhibit reasoning abilities, particularly as they grow in size and are trained on more data. Despite ongoing discussions about what reasoning is in language models, it is still not easy to pin down to what extent these models are actually capable of reasoning. The goal of this workshop is to create a platform for researchers from different disciplines and/or AI perspectives, to explore approaches and techniques with the aim to reconcile reasoning between language models using transformers and using logic-based representations. The specific objectives include analyzing the reasoning abilities of language models measured alongside KR methods, injecting KR-style reasoning abilities into language models (including by neuro-symbolic means), and formalizing the kind of reasoning language models carry out. This exploration aims to uncover how language models can effectively integrate and leverage knowledge and reasoning with it, thus improving their application and utility in areas where precision and reliability are a key requirement.
EQUATE: A Benchmark Evaluation Framework for Quantitative Reasoning in Natural Language Inference
Quantitative reasoning is a higher-order reasoning skill that any intelligent natural language understanding system can reasonably be expected to handle. We present EQUATE (Evaluating Quantitative Understanding Aptitude in Textual Entailment), a new framework for quantitative reasoning in textual entailment. We benchmark the performance of 9 published NLI models on EQUATE, and find that on average, state-of-the-art methods do not achieve an absolute improvement over a majority-class baseline, suggesting that they do not implicitly learn to reason with quantities. We establish a new baseline Q-REAS that manipulates quantities symbolically. In comparison to the best performing NLI model, it achieves success on numerical reasoning tests (+24.2%), but has limited verbal reasoning capabilities (-8.1%). We hope our evaluation framework will support the development of models of quantitative reasoning in language understanding.
CLadder: Assessing Causal Reasoning in Language Models
The ability to perform causal reasoning is widely considered a core feature of intelligence. In this work, we investigate whether large language models (LLMs) can coherently reason about causality. Much of the existing work in natural language processing (NLP) focuses on evaluating commonsense causal reasoning in LLMs, thus failing to assess whether a model can perform causal inference in accordance with a set of well-defined formal rules. To address this, we propose a new NLP task, causal inference in natural language, inspired by the "causal inference engine" postulated by Judea Pearl et al. We compose a large dataset, CLadder, with 10K samples: based on a collection of causal graphs and queries (associational, interventional, and counterfactual), we obtain symbolic questions and ground-truth answers, through an oracle causal inference engine. These are then translated into natural language. We evaluate multiple LLMs on our dataset, and we introduce and evaluate a bespoke chain-of-thought prompting strategy, CausalCoT. We show that our task is highly challenging for LLMs, and we conduct an in-depth analysis to gain deeper insights into the causal reasoning abilities of LLMs. Our data is open-sourced at https://huggingface.co/datasets/causalNLP/cladder, and our code can be found at https://github.com/causalNLP/cladder.
Natural Language Embedded Programs for Hybrid Language Symbolic Reasoning
How can we perform computations over natural language representations to solve tasks that require symbolic and numeric reasoning? We propose natural language embedded programs (NLEP) as a unifying framework for addressing math/symbolic reasoning, natural language understanding, and instruction following tasks. Our approach prompts a language model to generate full Python programs that define functions over data structures which contain natural language representations of structured knowledge. A Python interpreter then executes the generated code and prints the output. Despite using a task-general prompt, we find that this approach can improve upon strong baselines across a range of different tasks including math and symbolic reasoning, text classification, question answering, and instruction following. We further find the generated programs are often interpretable and enable post-hoc verification of the intermediate reasoning steps.
Reasoning about Ambiguous Definite Descriptions
Natural language reasoning plays an increasingly important role in improving language models' ability to solve complex language understanding tasks. An interesting use case for reasoning is the resolution of context-dependent ambiguity. But no resources exist to evaluate how well Large Language Models can use explicit reasoning to resolve ambiguity in language. We propose to use ambiguous definite descriptions for this purpose and create and publish the first benchmark dataset consisting of such phrases. Our method includes all information required to resolve the ambiguity in the prompt, which means a model does not require anything but reasoning to do well. We find this to be a challenging task for recent LLMs. Code and data available at: https://github.com/sfschouten/exploiting-ambiguity
GLoRE: Evaluating Logical Reasoning of Large Language Models
Recently, large language models (LLMs), including notable models such as GPT-4 and burgeoning community models, have showcased significant general language understanding abilities. However, there has been a scarcity of attempts to assess the logical reasoning capacities of these LLMs, an essential facet of natural language understanding. To encourage further investigation in this area, we introduce GLoRE, a meticulously assembled General Logical Reasoning Evaluation benchmark comprised of 12 datasets that span three different types of tasks. Our experimental results show that compared to the performance of human and supervised fine-tuning, the logical reasoning capabilities of open LLM models necessitate additional improvement; ChatGPT and GPT-4 show a strong capability of logical reasoning, with GPT-4 surpassing ChatGPT by a large margin. We propose a self-consistency probing method to enhance the accuracy of ChatGPT and a fine-tuned method to boost the performance of an open LLM. We release the datasets and evaluation programs to facilitate future research.
A Dataset for Statutory Reasoning in Tax Law Entailment and Question Answering
Legislation can be viewed as a body of prescriptive rules expressed in natural language. The application of legislation to facts of a case we refer to as statutory reasoning, where those facts are also expressed in natural language. Computational statutory reasoning is distinct from most existing work in machine reading, in that much of the information needed for deciding a case is declared exactly once (a law), while the information needed in much of machine reading tends to be learned through distributional language statistics. To investigate the performance of natural language understanding approaches on statutory reasoning, we introduce a dataset, together with a legal-domain text corpus. Straightforward application of machine reading models exhibits low out-of-the-box performance on our questions, whether or not they have been fine-tuned to the legal domain. We contrast this with a hand-constructed Prolog-based system, designed to fully solve the task. These experiments support a discussion of the challenges facing statutory reasoning moving forward, which we argue is an interesting real-world task that can motivate the development of models able to utilize prescriptive rules specified in natural language.
Towards Efficient and Robust VQA-NLE Data Generation with Large Vision-Language Models
Natural Language Explanation (NLE) aims to elucidate the decision-making process by providing detailed, human-friendly explanations in natural language. It helps demystify the decision-making processes of large vision-language models (LVLMs) through the use of language models. While existing methods for creating a Vision Question-Answering with Natural Language Explanation (VQA-NLE) datasets can provide explanations, they heavily rely on human annotations that are time-consuming and costly. In this study, we propose a novel approach that leverages LVLMs to efficiently generate high-quality synthetic VQA-NLE datasets. By evaluating our synthetic data, we showcase how advanced prompting techniques can lead to the production of high-quality VQA-NLE data. Our findings indicate that this proposed method achieves up to 20x faster than human annotation, with only a minimal decrease in qualitative metrics, achieving robust quality that is nearly equivalent to human-annotated data. Furthermore, we show that incorporating visual prompts significantly enhances the relevance of text generation. Our study paves the way for a more efficient and robust automated generation of multi-modal NLE data, offering a promising solution to the problem.
BoardgameQA: A Dataset for Natural Language Reasoning with Contradictory Information
Automated reasoning with unstructured natural text is a key requirement for many potential applications of NLP and for developing robust AI systems. Recently, Language Models (LMs) have demonstrated complex reasoning capacities even without any finetuning. However, existing evaluation for automated reasoning assumes access to a consistent and coherent set of information over which models reason. When reasoning in the real-world, the available information is frequently inconsistent or contradictory, and therefore models need to be equipped with a strategy to resolve such conflicts when they arise. One widely-applicable way of resolving conflicts is to impose preferences over information sources (e.g., based on source credibility or information recency) and adopt the source with higher preference. In this paper, we formulate the problem of reasoning with contradictory information guided by preferences over sources as the classical problem of defeasible reasoning, and develop a dataset called BoardgameQA for measuring the reasoning capacity of LMs in this setting. BoardgameQA also incorporates reasoning with implicit background knowledge, to better reflect reasoning problems in downstream applications. We benchmark various LMs on BoardgameQA and the results reveal a significant gap in the reasoning capacity of state-of-the-art LMs on this problem, showing that reasoning with conflicting information does not surface out-of-the-box in LMs. While performance can be improved with finetuning, it nevertheless remains poor.
D-NLP at SemEval-2024 Task 2: Evaluating Clinical Inference Capabilities of Large Language Models
Large language models (LLMs) have garnered significant attention and widespread usage due to their impressive performance in various tasks. However, they are not without their own set of challenges, including issues such as hallucinations, factual inconsistencies, and limitations in numerical-quantitative reasoning. Evaluating LLMs in miscellaneous reasoning tasks remains an active area of research. Prior to the breakthrough of LLMs, Transformers had already proven successful in the medical domain, effectively employed for various natural language understanding (NLU) tasks. Following this trend, LLMs have also been trained and utilized in the medical domain, raising concerns regarding factual accuracy, adherence to safety protocols, and inherent limitations. In this paper, we focus on evaluating the natural language inference capabilities of popular open-source and closed-source LLMs using clinical trial reports as the dataset. We present the performance results of each LLM and further analyze their performance on a development set, particularly focusing on challenging instances that involve medical abbreviations and require numerical-quantitative reasoning. Gemini, our leading LLM, achieved a test set F1-score of 0.748, securing the ninth position on the task scoreboard. Our work is the first of its kind, offering a thorough examination of the inference capabilities of LLMs within the medical domain.
Are Large Language Models Really Good Logical Reasoners? A Comprehensive Evaluation and Beyond
Logical reasoning consistently plays a fundamental and significant role in the domains of knowledge engineering and artificial intelligence. Recently, Large Language Models (LLMs) have emerged as a noteworthy innovation in natural language processing (NLP), exhibiting impressive achievements across various classic NLP tasks. However, the question of whether LLMs can effectively address the task of logical reasoning, which requires gradual cognitive inference similar to human intelligence, remains unanswered. To this end, we aim to bridge this gap and provide comprehensive evaluations in this paper. Firstly, to offer systematic evaluations, we select fifteen typical logical reasoning datasets and organize them into deductive, inductive, abductive and mixed-form reasoning settings. Considering the comprehensiveness of evaluations, we include three representative LLMs (i.e., text-davinci-003, ChatGPT and BARD) and evaluate them on all selected datasets under zero-shot, one-shot and three-shot settings. Secondly, different from previous evaluations relying only on simple metrics (e.g., accuracy), we propose fine-level evaluations from objective and subjective manners, covering both answers and explanations. Additionally, to uncover the logical flaws of LLMs, problematic cases will be attributed to five error types from two dimensions, i.e., evidence selection process and reasoning process. Thirdly, to avoid the influences of knowledge bias and purely focus on benchmarking the logical reasoning capability of LLMs, we propose a new dataset with neutral content. It contains 3,000 samples and covers deductive, inductive and abductive settings. Based on the in-depth evaluations, this paper finally forms a general evaluation scheme of logical reasoning capability from six dimensions. It reflects the pros and cons of LLMs and gives guiding directions for future works.
Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments
Large Language Models (LLMs) have shown potential in reasoning over structured environments, e.g., knowledge graph and table. Such tasks typically require multi-hop reasoning, i.e., match natural language utterance with instances in the environment. Previous methods leverage LLMs to incrementally build a reasoning path, where the LLMs either invoke tools or pick up schemas by step-by-step interacting with the environment. We propose Reasoning-Path-Editing (Readi), a novel framework where LLMs can efficiently and faithfully reason over structured environments. In Readi, LLMs initially generate a reasoning path given a query, and edit the path only when necessary. We instantiate the path on structured environments and provide feedback to edit the path if anything goes wrong. Experimental results on three KGQA and two TableQA datasets show the effectiveness of Readi, significantly surpassing previous LLM-based methods (by 9.1% Hit@1 on WebQSP, 12.4% on MQA-3H and 9.5% on WTQ), comparable with state-of-the-art fine-tuned methods (67% on CWQ and 74.7% on WebQSP) and substantially boosting the vanilla LLMs (by 14.9% on CWQ). Our code will be available on https://aka.ms/readi.
Query Understanding for Natural Language Enterprise Search
Natural Language Search (NLS) extends the capabilities of search engines that perform keyword search allowing users to issue queries in a more "natural" language. The engine tries to understand the meaning of the queries and to map the query words to the symbols it supports like Persons, Organizations, Time Expressions etc.. It, then, retrieves the information that satisfies the user's need in different forms like an answer, a record or a list of records. We present an NLS system we implemented as part of the Search service of a major CRM platform. The system is currently in production serving thousands of customers. Our user studies showed that creating dynamic reports with NLS saved more than 50% of our user's time compared to achieving the same result with navigational search. We describe the architecture of the system, the particularities of the CRM domain as well as how they have influenced our design decisions. Among several submodules of the system we detail the role of a Deep Learning Named Entity Recognizer. The paper concludes with discussion over the lessons learned while developing this product.
Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence
This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) hagag2024legallenssharedtask2024. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field.
Bonafide at LegalLens 2024 Shared Task: Using Lightweight DeBERTa Based Encoder For Legal Violation Detection and Resolution
In this work, we present two systems -- Named Entity Resolution (NER) and Natural Language Inference (NLI) -- for detecting legal violations within unstructured textual data and for associating these violations with potentially affected individuals, respectively. Both these systems are lightweight DeBERTa based encoders that outperform the LLM baselines. The proposed NER system achieved an F1 score of 60.01\% on Subtask A of the LegalLens challenge, which focuses on identifying violations. The proposed NLI system achieved an F1 score of 84.73\% on Subtask B of the LegalLens challenge, which focuses on resolving these violations by matching them with pre-existing legal complaints of class action cases. Our NER system ranked sixth and NLI system ranked fifth on the LegalLens leaderboard. We release the trained models and inference scripts.
How Does Data Corruption Affect Natural Language Understanding Models? A Study on GLUE datasets
A central question in natural language understanding (NLU) research is whether high performance demonstrates the models' strong reasoning capabilities. We present an extensive series of controlled experiments where pre-trained language models are exposed to data that have undergone specific corruption transformations. These involve removing instances of specific word classes and often lead to non-sensical sentences. Our results show that performance remains high on most GLUE tasks when the models are fine-tuned or tested on corrupted data, suggesting that they leverage other cues for prediction even in non-sensical contexts. Our proposed data transformations can be used to assess the extent to which a specific dataset constitutes a proper testbed for evaluating models' language understanding capabilities.
Reframing Tax Law Entailment as Analogical Reasoning
Statutory reasoning refers to the application of legislative provisions to a series of case facts described in natural language. We re-frame statutory reasoning as an analogy task, where each instance of the analogy task involves a combination of two instances of statutory reasoning. This increases the dataset size by two orders of magnitude, and introduces an element of interpretability. We show that this task is roughly as difficult to Natural Language Processing models as the original task. Finally, we come back to statutory reasoning, solving it with a combination of a retrieval mechanism and analogy models, and showing some progress on prior comparable work.
Reasoning's Razor: Reasoning Improves Accuracy but Can Hurt Recall at Critical Operating Points in Safety and Hallucination Detection
Reasoning has become a central paradigm for large language models (LLMs), consistently boosting accuracy across diverse benchmarks. Yet its suitability for precision-sensitive tasks remains unclear. We present the first systematic study of reasoning for classification tasks under strict low false positive rate (FPR) regimes. Our analysis covers two tasks--safety detection and hallucination detection--evaluated in both fine-tuned and zero-shot settings, using standard LLMs and Large Reasoning Models (LRMs). Our results reveal a clear trade-off: Think On (reasoning-augmented) generation improves overall accuracy, but underperforms at the low-FPR thresholds essential for practical use. In contrast, Think Off (no reasoning during inference) dominates in these precision-sensitive regimes, with Think On surpassing only when higher FPRs are acceptable. In addition, we find token-based scoring substantially outperforms self-verbalized confidence for precision-sensitive deployments. Finally, a simple ensemble of the two modes recovers the strengths of each. Taken together, our findings position reasoning as a double-edged tool: beneficial for average accuracy, but often ill-suited for applications requiring strict precision.
COLD: Causal reasOning in cLosed Daily activities
Large Language Models (LLMs) have shown state-of-the-art performance in a variety of tasks, including arithmetic and reasoning; however, to gauge the intellectual capabilities of LLMs, causal reasoning has become a reliable proxy for validating a general understanding of the mechanics and intricacies of the world similar to humans. Previous works in natural language processing (NLP) have either focused on open-ended causal reasoning via causal commonsense reasoning (CCR) or framed a symbolic representation-based question answering for theoretically backed-up analysis via a causal inference engine. The former adds an advantage of real-world grounding but lacks theoretically backed-up analysis/validation, whereas the latter is far from real-world grounding. In this work, we bridge this gap by proposing the COLD (Causal reasOning in cLosed Daily activities) framework, which is built upon human understanding of daily real-world activities to reason about the causal nature of events. We show that the proposed framework facilitates the creation of enormous causal queries (~ 9 million) and comes close to the mini-turing test, simulating causal reasoning to evaluate the understanding of a daily real-world task. We evaluate multiple LLMs on the created causal queries and find that causal reasoning is challenging even for activities trivial to humans. We further explore (the causal reasoning abilities of LLMs) using the backdoor criterion to determine the causal strength between events.
A Reasoning Paradigm for Named Entity Recognition
Generative LLMs typically improve Named Entity Recognition (NER) performance through instruction tuning. They excel at generating entities by semantic pattern matching but lack an explicit, verifiable reasoning mechanism. This "cognitive shortcutting" leads to suboptimal performance and brittle generalization, especially in zero-shot and lowresource scenarios where reasoning from limited contextual cues is crucial. To address this issue, a reasoning framework is proposed for NER, which shifts the extraction paradigm from implicit pattern matching to explicit reasoning. This framework consists of three stages: Chain of Thought (CoT) generation, CoT tuning, and reasoning enhancement. First, a dataset annotated with NER-oriented CoTs is generated, which contain task-relevant reasoning chains. Then, they are used to tune the NER model to generate coherent rationales before deriving the final answer. Finally, a reasoning enhancement stage is implemented to optimize the reasoning process using a comprehensive reward signal. This stage ensures explicit and verifiable extractions. Experiments show that ReasoningNER demonstrates impressive cognitive ability in the NER task, achieving competitive performance. In zero-shot settings, it achieves state-of-the-art (SOTA) performance, outperforming GPT-4 by 12.3 percentage points on the F1 score. Analytical results also demonstrate its great potential to advance research in reasoningoriented information extraction. Our codes are available at https://github.com/HuiResearch/ReasoningIE.
RAR-b: Reasoning as Retrieval Benchmark
Semantic textual similartiy (STS) and information retrieval tasks (IR) tasks have been the two major avenues to record the progress of embedding models in the past few years. Under the emerging Retrieval-augmented Generation (RAG) paradigm, we envision the need to evaluate next-level language understanding abilities of embedding models, and take a conscious look at the reasoning abilities stored in them. Addressing this, we pose the question: Can retrievers solve reasoning problems? By transforming reasoning tasks into retrieval tasks, we find that without specifically trained for reasoning-level language understanding, current state-of-the-art retriever models may still be far from being competent for playing the role of assisting LLMs, especially in reasoning-intensive tasks. Moreover, albeit trained to be aware of instructions, instruction-aware IR models are often better off without instructions in inference time for reasoning tasks, posing an overlooked retriever-LLM behavioral gap for the research community to align. However, recent decoder-based embedding models show great promise in narrowing the gap, highlighting the pathway for embedding models to achieve reasoning-level language understanding. We also show that, although current off-the-shelf re-ranker models fail on these tasks, injecting reasoning abilities into them through fine-tuning still appears easier than doing so to bi-encoders, and we are able to achieve state-of-the-art performance across all tasks by fine-tuning a reranking model. We release Reasoning as Retrieval Benchmark (RAR-b), a holistic suite of tasks and settings to evaluate the reasoning abilities stored in retriever models. RAR-b is available at https://github.com/gowitheflow-1998/RAR-b.
SQL-R1: Training Natural Language to SQL Reasoning Model By Reinforcement Learning
Natural Language to SQL (NL2SQL) enables intuitive interactions with databases by transforming natural language queries into structured SQL statements. Despite recent advancements in enhancing human-computer interaction within database applications, significant challenges persist, particularly regarding the inference performance in complex scenarios involving multi-table joins and nested queries. Current methodologies primarily utilize supervised fine-tuning (SFT) to train the NL2SQL model, which may limit adaptability and interpretability in new environments (e.g., finance and healthcare). In order to enhance the reasoning performance of the NL2SQL model in the above complex situations, we introduce SQL-R1, a novel NL2SQL reasoning model trained by the reinforcement learning (RL) algorithms. We design a specialized RL-based reward function tailored for NL2SQL tasks and discussed the impact of cold start on the effectiveness of intensive training. In addition, we achieve competitive accuracy using only a tiny amount of synthetic NL2SQL data for augmented training and further explore data engineering for RL. In existing experiments, SQL-R1 achieves execution accuracy of 88.6% and 66.6% on the benchmark Spider and BIRD, respectively, only using the 7B base model.
Rethinking with Retrieval: Faithful Large Language Model Inference
Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs.
DivLogicEval: A Framework for Benchmarking Logical Reasoning Evaluation in Large Language Models
Logic reasoning in natural language has been recognized as an important measure of human intelligence for Large Language Models (LLMs). Popular benchmarks may entangle multiple reasoning skills and thus provide unfaithful evaluations on the logic reasoning skill. Meanwhile, existing logic reasoning benchmarks are limited in language diversity and their distributions are deviated from the distribution of an ideal logic reasoning benchmark, which may lead to biased evaluation results. This paper thereby proposes a new classical logic benchmark DivLogicEval, consisting of natural sentences composed of diverse statements in a counterintuitive way. To ensure a more reliable evaluation, we also introduce a new evaluation metric that mitigates the influence of bias and randomness inherent in LLMs. Through experiments, we demonstrate the extent to which logical reasoning is required to answer the questions in DivLogicEval and compare the performance of different popular LLMs in conducting logical reasoning.
Logical Reasoning in Large Language Models: A Survey
With the emergence of advanced reasoning models like OpenAI o3 and DeepSeek-R1, large language models (LLMs) have demonstrated remarkable reasoning capabilities. However, their ability to perform rigorous logical reasoning remains an open question. This survey synthesizes recent advancements in logical reasoning within LLMs, a critical area of AI research. It outlines the scope of logical reasoning in LLMs, its theoretical foundations, and the benchmarks used to evaluate reasoning proficiency. We analyze existing capabilities across different reasoning paradigms - deductive, inductive, abductive, and analogical - and assess strategies to enhance reasoning performance, including data-centric tuning, reinforcement learning, decoding strategies, and neuro-symbolic approaches. The review concludes with future directions, emphasizing the need for further exploration to strengthen logical reasoning in AI systems.
A scalable framework for learning from implicit user feedback to improve natural language understanding in large-scale conversational AI systems
Natural Language Understanding (NLU) is an established component within a conversational AI or digital assistant system, and it is responsible for producing semantic understanding of a user request. We propose a scalable and automatic approach for improving NLU in a large-scale conversational AI system by leveraging implicit user feedback, with an insight that user interaction data and dialog context have rich information embedded from which user satisfaction and intention can be inferred. In particular, we propose a general domain-agnostic framework for curating new supervision data for improving NLU from live production traffic. With an extensive set of experiments, we show the results of applying the framework and improving NLU for a large-scale production system and show its impact across 10 domains.
Graph-Guided Textual Explanation Generation Framework
Natural language explanations (NLEs) are commonly used to provide plausible free-text explanations of a model's reasoning about its predictions. However, recent work has questioned the faithfulness of NLEs, as they may not accurately reflect the model's internal reasoning process regarding its predicted answer. In contrast, highlight explanations -- input fragments identified as critical for the model's predictions -- exhibit measurable faithfulness, which has been incrementally improved through existing research. Building on this foundation, we propose G-Tex, a Graph-Guided Textual Explanation Generation framework designed to enhance the faithfulness of NLEs by leveraging highlight explanations. Specifically, highlight explanations are extracted as highly faithful cues representing the model's reasoning and are subsequently encoded through a graph neural network layer, which explicitly guides the NLE generation process. This alignment ensures that the generated explanations closely reflect the model's underlying reasoning. Experiments on T5 and BART using three reasoning datasets show that G-Tex improves NLE faithfulness by up to 17.59% compared to baseline methods. Additionally, G-Tex generates NLEs with greater semantic and lexical similarity to human-written ones. Human evaluations show that G-Tex can decrease redundant content and enhance the overall quality of NLEs. As our work introduces a novel method for explicitly guiding NLE generation to improve faithfulness, we hope it will serve as a stepping stone for addressing additional criteria for NLE and generated text overall.
Evaluating Multi-Hop Reasoning in Large Language Models: A Chemistry-Centric Case Study
In this study, we introduced a new benchmark consisting of a curated dataset and a defined evaluation process to assess the compositional reasoning capabilities of large language models within the chemistry domain. We designed and validated a fully automated pipeline, verified by subject matter experts, to facilitate this task. Our approach integrates OpenAI reasoning models with named entity recognition (NER) systems to extract chemical entities from recent literature, which are then augmented with external knowledge bases to form a comprehensive knowledge graph. By generating multi-hop questions across these graphs, we assess LLM performance in both context-augmented and non-context augmented settings. Our experiments reveal that even state-of-the-art models face significant challenges in multi-hop compositional reasoning. The results reflect the importance of augmenting LLMs with document retrieval, which can have a substantial impact on improving their performance. However, even perfect retrieval accuracy with full context does not eliminate reasoning errors, underscoring the complexity of compositional reasoning. This work not only benchmarks and highlights the limitations of current LLMs but also presents a novel data generation pipeline capable of producing challenging reasoning datasets across various domains. Overall, this research advances our understanding of reasoning in computational linguistics.
Speaking in Words, Thinking in Logic: A Dual-Process Framework in QA Systems
Recent advances in large language models (LLMs) have significantly enhanced question-answering (QA) capabilities, particularly in open-domain contexts. However, in closed-domain scenarios such as education, healthcare, and law, users demand not only accurate answers but also transparent reasoning and explainable decision-making processes. While neural-symbolic (NeSy) frameworks have emerged as a promising solution, leveraging LLMs for natural language understanding and symbolic systems for formal reasoning, existing approaches often rely on large-scale models and exhibit inefficiencies in translating natural language into formal logic representations. To address these limitations, we introduce Text-JEPA (Text-based Joint-Embedding Predictive Architecture), a lightweight yet effective framework for converting natural language into first-order logic (NL2FOL). Drawing inspiration from dual-system cognitive theory, Text-JEPA emulates System 1 by efficiently generating logic representations, while the Z3 solver operates as System 2, enabling robust logical inference. To rigorously evaluate the NL2FOL-to-reasoning pipeline, we propose a comprehensive evaluation framework comprising three custom metrics: conversion score, reasoning score, and Spearman rho score, which collectively capture the quality of logical translation and its downstream impact on reasoning accuracy. Empirical results on domain-specific datasets demonstrate that Text-JEPA achieves competitive performance with significantly lower computational overhead compared to larger LLM-based systems. Our findings highlight the potential of structured, interpretable reasoning frameworks for building efficient and explainable QA systems in specialized domains.
DeepSeek vs. o3-mini: How Well can Reasoning LLMs Evaluate MT and Summarization?
Reasoning-enabled large language models (LLMs) have recently demonstrated impressive performance in complex logical and mathematical tasks, yet their effectiveness in evaluating natural language generation remains unexplored. This study systematically compares reasoning-based LLMs (DeepSeek-R1 and OpenAI o3) with their non-reasoning counterparts across machine translation (MT) and text summarization (TS) evaluation tasks. We evaluate eight models across three architectural categories, including state-of-the-art reasoning models, their distilled variants (ranging from 8B to 70B parameters), and equivalent conventional, non-reasoning LLMs. Our experiments on WMT23 and SummEval benchmarks reveal that the benefits of reasoning capabilities are highly model and task-dependent: while OpenAI o3-mini models show consistent performance improvements with increased reasoning intensity, DeepSeek-R1 underperforms compared to its non-reasoning variant, with exception to certain aspects of TS evaluation. Correlation analysis demonstrates that increased reasoning token usage positively correlates with evaluation quality in o3-mini models. Furthermore, our results show that distillation of reasoning capabilities maintains reasonable performance in medium-sized models (32B) but degrades substantially in smaller variants (8B). This work provides the first comprehensive assessment of reasoning LLMs for NLG evaluation and offers insights into their practical use.
AR-LSAT: Investigating Analytical Reasoning of Text
Analytical reasoning is an essential and challenging task that requires a system to analyze a scenario involving a set of particular circumstances and perform reasoning over it to make conclusions. In this paper, we study the challenge of analytical reasoning of text and introduce a new dataset consisting of questions from the Law School Admission Test from 1991 to 2016. We analyze what knowledge understanding and reasoning abilities are required to do well on this task. Furthermore, to address this reasoning challenge, we design two different baselines: (1) a Transformer-based method which leverages the state-of-the-art pre-trained language models and (2) Analytical Reasoning Machine (ARM), a logical-level reasoning framework extracting symbolic knowledge (e.g, participants, facts, logical functions) to deduce legitimate solutions. In our experiments, we find that the Transformer-based models struggle to solve this task as their performance is close to random guess and ARM achieves better performance by leveraging symbolic knowledge and interpretable reasoning steps. Results show that both methods still lag far behind human performance, which leave further space for future research.
When Does Meaning Backfire? Investigating the Role of AMRs in NLI
Natural Language Inference (NLI) relies heavily on adequately parsing the semantic content of the premise and hypothesis. In this work, we investigate whether adding semantic information in the form of an Abstract Meaning Representation (AMR) helps pretrained language models better generalize in NLI. Our experiments integrating AMR into NLI in both fine-tuning and prompting settings show that the presence of AMR in fine-tuning hinders model generalization while prompting with AMR leads to slight gains in GPT-4o. However, an ablation study reveals that the improvement comes from amplifying surface-level differences rather than aiding semantic reasoning. This amplification can mislead models to predict non-entailment even when the core meaning is preserved.
Abductive Commonsense Reasoning
Abductive reasoning is inference to the most plausible explanation. For example, if Jenny finds her house in a mess when she returns from work, and remembers that she left a window open, she can hypothesize that a thief broke into her house and caused the mess, as the most plausible explanation. While abduction has long been considered to be at the core of how people interpret and read between the lines in natural language (Hobbs et al., 1988), there has been relatively little research in support of abductive natural language inference and generation. We present the first study that investigates the viability of language-based abductive reasoning. We introduce a challenge dataset, ART, that consists of over 20k commonsense narrative contexts and 200k explanations. Based on this dataset, we conceptualize two new tasks -- (i) Abductive NLI: a multiple-choice question answering task for choosing the more likely explanation, and (ii) Abductive NLG: a conditional generation task for explaining given observations in natural language. On Abductive NLI, the best model achieves 68.9% accuracy, well below human performance of 91.4%. On Abductive NLG, the current best language generators struggle even more, as they lack reasoning capabilities that are trivial for humans. Our analysis leads to new insights into the types of reasoning that deep pre-trained language models fail to perform--despite their strong performance on the related but more narrowly defined task of entailment NLI--pointing to interesting avenues for future research.
Learning From Correctness Without Prompting Makes LLM Efficient Reasoner
Large language models (LLMs) have demonstrated outstanding performance across various tasks, yet they still exhibit limitations such as hallucination, unfaithful reasoning, and toxic content. One potential approach to mitigate these issues is learning from human or external feedback (e.g. tools). In this paper, we introduce an intrinsic self-correct reasoning framework for LLMs that eliminates the need for human feedback, external tools, and handcraft prompts. The proposed framework, based on a multi-step reasoning paradigm Learning from Correctness (LeCo), improves reasoning performance without needing to learn from errors. This paradigm prioritizes learning from correct reasoning steps, and a unique method to measure confidence for each reasoning step based on generation logits. Experimental results across various multi-step reasoning tasks demonstrate the effectiveness of the framework in improving reasoning performance with reduced token consumption.
Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4
Harnessing logical reasoning ability is a comprehensive natural language understanding endeavor. With the release of Generative Pretrained Transformer 4 (GPT-4), highlighted as "advanced" at reasoning tasks, we are eager to learn the GPT-4 performance on various logical reasoning tasks. This report analyses multiple logical reasoning datasets, with popular benchmarks like LogiQA and ReClor, and newly-released datasets like AR-LSAT. We test the multi-choice reading comprehension and natural language inference tasks with benchmarks requiring logical reasoning. We further construct a logical reasoning out-of-distribution dataset to investigate the robustness of ChatGPT and GPT-4. We also make a performance comparison between ChatGPT and GPT-4. Experiment results show that ChatGPT performs significantly better than the RoBERTa fine-tuning method on most logical reasoning benchmarks. With early access to the GPT-4 API we are able to conduct intense experiments on the GPT-4 model. The results show GPT-4 yields even higher performance on most logical reasoning datasets. Among benchmarks, ChatGPT and GPT-4 do relatively well on well-known datasets like LogiQA and ReClor. However, the performance drops significantly when handling newly released and out-of-distribution datasets. Logical reasoning remains challenging for ChatGPT and GPT-4, especially on out-of-distribution and natural language inference datasets. We release the prompt-style logical reasoning datasets as a benchmark suite and name it LogiEval.
LAMBADA: Backward Chaining for Automated Reasoning in Natural Language
Remarkable progress has been made on automated reasoning with natural text, by using Language Models (LMs) and methods such as Chain-of-Thought and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from the intended conclusion to supporting axioms) is significantly more efficient at proof-finding. Importing this intuition into the LM setting, we develop a Backward Chaining algorithm, called LAMBADA, that decomposes reasoning into four sub-modules. These sub-modules are simply implemented by few-shot prompted LM inference. We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods on challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.
Beyond Natural Language: LLMs Leveraging Alternative Formats for Enhanced Reasoning and Communication
Natural language (NL) has long been the predominant format for human cognition and communication, and by extension, has been similarly pivotal in the development and application of Large Language Models (LLMs). Yet, besides NL, LLMs have seen various non-NL formats during pre-training, such as code and logical expression. NL's status as the optimal format for LLMs, particularly in single-LLM reasoning and multi-agent communication, has not been thoroughly examined. In this work, we challenge the default use of NL by exploring the utility of non-NL formats in these contexts. We show that allowing LLMs to autonomously select the most suitable format before reasoning or communicating leads to a 3.3 to 5.7\% improvement in reasoning efficiency for different LLMs, and up to a 72.7\% reduction in token usage in multi-agent communication, all while maintaining communicative effectiveness. Our comprehensive analysis further reveals that LLMs can devise a format from limited task instructions and that the devised format is effectively transferable across different LLMs. Intriguingly, the structured communication format decided by LLMs exhibits notable parallels with established agent communication languages, suggesting a natural evolution towards efficient, structured communication in agent communication. Our code is released at https://github.com/thunlp/AutoForm.
Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1)
Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks. Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains. However, effectively extending these capabilities into multimodal contexts-where models must integrate both visual and textual inputs-continues to be a significant challenge. Multimodal reasoning introduces complexities, such as handling conflicting information across modalities, which require models to adopt advanced interpretative strategies. Addressing these challenges involves not only sophisticated algorithms but also robust methodologies for evaluating reasoning accuracy and coherence. This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs. Through a thorough and up-to-date comparison, we clearly formulate core reasoning challenges and opportunities, highlighting practical methods for post-training optimization and test-time inference. Our work provides valuable insights and guidance, bridging theoretical frameworks and practical implementations, and sets clear directions for future research.
DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language Processing
The meaningful use of electronic health records (EHR) continues to progress in the digital era with clinical decision support systems augmented by artificial intelligence. A priority in improving provider experience is to overcome information overload and reduce the cognitive burden so fewer medical errors and cognitive biases are introduced during patient care. One major type of medical error is diagnostic error due to systematic or predictable errors in judgment that rely on heuristics. The potential for clinical natural language processing (cNLP) to model diagnostic reasoning in humans with forward reasoning from data to diagnosis and potentially reduce the cognitive burden and medical error has not been investigated. Existing tasks to advance the science in cNLP have largely focused on information extraction and named entity recognition through classification tasks. We introduce a novel suite of tasks coined as Diagnostic Reasoning Benchmarks, DR.BENCH, as a new benchmark for developing and evaluating cNLP models with clinical diagnostic reasoning ability. The suite includes six tasks from ten publicly available datasets addressing clinical text understanding, medical knowledge reasoning, and diagnosis generation. DR.BENCH is the first clinical suite of tasks designed to be a natural language generation framework to evaluate pre-trained language models. Experiments with state-of-the-art pre-trained generative language models using large general domain models and models that were continually trained on a medical corpus demonstrate opportunities for improvement when evaluated in DR. BENCH. We share DR. BENCH as a publicly available GitLab repository with a systematic approach to load and evaluate models for the cNLP community.
Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs
Reasoning is a fundamental component for achieving language understanding. Among the multiple types of reasoning, conditional reasoning, the ability to draw different conclusions depending on some condition, has been understudied in large language models (LLMs). Recent prompting methods, such as chain of thought, have significantly improved LLMs on reasoning tasks. Nevertheless, there is still little understanding of what triggers reasoning abilities in LLMs. We hypothesize that code prompts can trigger conditional reasoning in LLMs trained on text and code. We propose a chain of prompts that transforms a natural language problem into code and prompts the LLM with the generated code. Our experiments find that code prompts exhibit a performance boost between 2.6 and 7.7 points on GPT 3.5 across multiple datasets requiring conditional reasoning. We then conduct experiments to discover how code prompts elicit conditional reasoning abilities and through which features. We observe that prompts need to contain natural language text accompanied by high-quality code that closely represents the semantics of the instance text. Furthermore, we show that code prompts are more efficient, requiring fewer demonstrations, and that they trigger superior state tracking of variables or key entities.
Thinking Machines: A Survey of LLM based Reasoning Strategies
Large Language Models (LLMs) are highly proficient in language-based tasks. Their language capabilities have positioned them at the forefront of the future AGI (Artificial General Intelligence) race. However, on closer inspection, Valmeekam et al. (2024); Zecevic et al. (2023); Wu et al. (2024) highlight a significant gap between their language proficiency and reasoning abilities. Reasoning in LLMs and Vision Language Models (VLMs) aims to bridge this gap by enabling these models to think and re-evaluate their actions and responses. Reasoning is an essential capability for complex problem-solving and a necessary step toward establishing trust in Artificial Intelligence (AI). This will make AI suitable for deployment in sensitive domains, such as healthcare, banking, law, defense, security etc. In recent times, with the advent of powerful reasoning models like OpenAI O1 and DeepSeek R1, reasoning endowment has become a critical research topic in LLMs. In this paper, we provide a detailed overview and comparison of existing reasoning techniques and present a systematic survey of reasoning-imbued language models. We also study current challenges and present our findings.
SpaceNLI: Evaluating the Consistency of Predicting Inferences in Space
While many natural language inference (NLI) datasets target certain semantic phenomena, e.g., negation, tense & aspect, monotonicity, and presupposition, to the best of our knowledge, there is no NLI dataset that involves diverse types of spatial expressions and reasoning. We fill this gap by semi-automatically creating an NLI dataset for spatial reasoning, called SpaceNLI. The data samples are automatically generated from a curated set of reasoning patterns, where the patterns are annotated with inference labels by experts. We test several SOTA NLI systems on SpaceNLI to gauge the complexity of the dataset and the system's capacity for spatial reasoning. Moreover, we introduce a Pattern Accuracy and argue that it is a more reliable and stricter measure than the accuracy for evaluating a system's performance on pattern-based generated data samples. Based on the evaluation results we find that the systems obtain moderate results on the spatial NLI problems but lack consistency per inference pattern. The results also reveal that non-projective spatial inferences (especially due to the "between" preposition) are the most challenging ones.
MME-Reasoning: A Comprehensive Benchmark for Logical Reasoning in MLLMs
Logical reasoning is a fundamental aspect of human intelligence and an essential capability for multimodal large language models (MLLMs). Despite the significant advancement in multimodal reasoning, existing benchmarks fail to comprehensively evaluate their reasoning abilities due to the lack of explicit categorization for logical reasoning types and an unclear understanding of reasoning. To address these issues, we introduce MME-Reasoning, a comprehensive benchmark designed to evaluate the reasoning ability of MLLMs, which covers all three types of reasoning (i.e., inductive, deductive, and abductive) in its questions. We carefully curate the data to ensure that each question effectively evaluates reasoning ability rather than perceptual skills or knowledge breadth, and extend the evaluation protocols to cover the evaluation of diverse questions. Our evaluation reveals substantial limitations of state-of-the-art MLLMs when subjected to holistic assessments of logical reasoning capabilities. Even the most advanced MLLMs show limited performance in comprehensive logical reasoning, with notable performance imbalances across reasoning types. In addition, we conducted an in-depth analysis of approaches such as ``thinking mode'' and Rule-based RL, which are commonly believed to enhance reasoning abilities. These findings highlight the critical limitations and performance imbalances of current MLLMs in diverse logical reasoning scenarios, providing comprehensive and systematic insights into the understanding and evaluation of reasoning capabilities.
KunLunBaizeRAG: Reinforcement Learning Driven Inference Performance Leap for Large Language Models
This paper introduces KunLunBaizeRAG, a reinforcement learning-driven reasoning framework designed to enhance the reasoning capabilities of large language models (LLMs) in complex multi-hop question-answering tasks. The framework addresses key limitations of traditional RAG, such as retrieval drift, information redundancy, and strategy rigidity. Key innovations include the RAG-driven Reasoning Alignment (RDRA) mechanism, the Search-Think Iterative Enhancement (STIE) mechanism, the Network-Local Intelligent Routing (NLR) mechanism, and a progressive hybrid training strategy. Experimental results demonstrate significant improvements in exact match (EM) and LLM-judged score (LJ) across four benchmarks, highlighting the framework's robustness and effectiveness in complex reasoning scenarios.
MarkQA: A large scale KBQA dataset with numerical reasoning
While question answering over knowledge bases (KBQA) has shown progress in addressing factoid questions, KBQA with numerical reasoning remains relatively unexplored. In this paper, we focus on the complex numerical reasoning in KBQA and propose a new task, NR-KBQA, which necessitates the ability to perform both multi-hop reasoning and numerical reasoning. We design a logic form in Python format called PyQL to represent the reasoning process of numerical reasoning questions. To facilitate the development of NR-KBQA, we present a large dataset called MarkQA, which is automatically constructed from a small set of seeds. Each question in MarkQA is equipped with its corresponding SPARQL query, alongside the step-by-step reasoning process in the QDMR format and PyQL program. Experimental results of some state-of-the-art QA methods on the MarkQA show that complex numerical reasoning in KBQA faces great challenges.
CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text
The recent success of natural language understanding (NLU) systems has been troubled by results highlighting the failure of these models to generalize in a systematic and robust way. In this work, we introduce a diagnostic benchmark suite, named CLUTRR, to clarify some key issues related to the robustness and systematicity of NLU systems. Motivated by classic work on inductive logic programming, CLUTRR requires that an NLU system infer kinship relations between characters in short stories. Successful performance on this task requires both extracting relationships between entities, as well as inferring the logical rules governing these relationships. CLUTRR allows us to precisely measure a model's ability for systematic generalization by evaluating on held-out combinations of logical rules, and it allows us to evaluate a model's robustness by adding curated noise facts. Our empirical results highlight a substantial performance gap between state-of-the-art NLU models (e.g., BERT and MAC) and a graph neural network model that works directly with symbolic inputs---with the graph-based model exhibiting both stronger generalization and greater robustness.
Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition
Natural language inference (NLI) is an increasingly important task for natural language understanding, which requires one to infer whether a sentence entails another. However, the ability of NLI models to make pragmatic inferences remains understudied. We create an IMPlicature and PRESupposition diagnostic dataset (IMPPRES), consisting of >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. We use IMPPRES to evaluate whether BERT, InferSent, and BOW NLI models trained on MultiNLI (Williams et al., 2018) learn to make pragmatic inferences. Although MultiNLI appears to contain very few pairs illustrating these inference types, we find that BERT learns to draw pragmatic inferences. It reliably treats scalar implicatures triggered by "some" as entailments. For some presupposition triggers like "only", BERT reliably recognizes the presupposition as an entailment, even when the trigger is embedded under an entailment canceling operator like negation. BOW and InferSent show weaker evidence of pragmatic reasoning. We conclude that NLI training encourages models to learn some, but not all, pragmatic inferences.
Sound and Complete Neuro-symbolic Reasoning with LLM-Grounded Interpretations
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but they exhibit problems with logical consistency in the output they generate. How can we harness LLMs' broad-coverage parametric knowledge in formal reasoning despite their inconsistency? We present a method for directly integrating an LLM into the interpretation function of the formal semantics for a paraconsistent logic. We provide experimental evidence for the feasibility of the method by evaluating the function using datasets created from several short-form factuality benchmarks. Unlike prior work, our method offers a theoretical framework for neuro-symbolic reasoning that leverages an LLM's knowledge while preserving the underlying logic's soundness and completeness properties.
ContractNLI: A Dataset for Document-level Natural Language Inference for Contracts
Reviewing contracts is a time-consuming procedure that incurs large expenses to companies and social inequality to those who cannot afford it. In this work, we propose "document-level natural language inference (NLI) for contracts", a novel, real-world application of NLI that addresses such problems. In this task, a system is given a set of hypotheses (such as "Some obligations of Agreement may survive termination.") and a contract, and it is asked to classify whether each hypothesis is "entailed by", "contradicting to" or "not mentioned by" (neutral to) the contract as well as identifying "evidence" for the decision as spans in the contract. We annotated and release the largest corpus to date consisting of 607 annotated contracts. We then show that existing models fail badly on our task and introduce a strong baseline, which (1) models evidence identification as multi-label classification over spans instead of trying to predict start and end tokens, and (2) employs more sophisticated context segmentation for dealing with long documents. We also show that linguistic characteristics of contracts, such as negations by exceptions, are contributing to the difficulty of this task and that there is much room for improvement.
MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning
While large language models (LLMs) equipped with techniques like chain-of-thought prompting have demonstrated impressive capabilities, they still fall short in their ability to reason robustly in complex settings. However, evaluating LLM reasoning is challenging because system capabilities continue to grow while benchmark datasets for tasks like logical deduction have remained static. We introduce MuSR, a dataset for evaluating language models on multistep soft reasoning tasks specified in a natural language narrative. This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm, enabling the construction of complex reasoning instances that challenge GPT-4 (e.g., murder mysteries roughly 1000 words in length) and which can be scaled further as more capable LLMs are released. Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning; this makes it simultaneously much more challenging than other synthetically-crafted benchmarks while remaining realistic and tractable for human annotators to solve with high accuracy. We evaluate a range of LLMs and prompting techniques on this dataset and characterize the gaps that remain for techniques like chain-of-thought to perform robust reasoning.
WikiWhy: Answering and Explaining Cause-and-Effect Questions
As large language models (LLMs) grow larger and more sophisticated, assessing their "reasoning" capabilities in natural language grows more challenging. Recent question answering (QA) benchmarks that attempt to assess reasoning are often limited by a narrow scope of covered situations and subject matters. We introduce WikiWhy, a QA dataset built around a novel auxiliary task: explaining why an answer is true in natural language. WikiWhy contains over 9,000 "why" question-answer-rationale triples, grounded on Wikipedia facts across a diverse set of topics. Each rationale is a set of supporting statements connecting the question to the answer. WikiWhy serves as a benchmark for the reasoning capabilities of LLMs because it demands rigorous explicit rationales for each answer to demonstrate the acquisition of implicit commonsense knowledge, which is unlikely to be easily memorized. GPT-3 baselines achieve only 38.7% human-evaluated correctness in the end-to-end answer & explain condition, leaving significant room for future improvements.
PrefixNLI: Detecting Factual Inconsistencies as Soon as They Arise
Natural Language Inference (NLI) models have been used in various ways to improve the factuality of LLM outputs. This is typically done by applying an NLI model to judge whether the model output is entailed from the supposed evidence, triggering some corrective actions, such as beam reranking at inference time or RL rewards during training. While NLI models are trained to detect factual inconsistencies over complete sentences, decisions in the common autoregressive generation architecture are made for each evolving text prefix, during decoding. Addressing this setting, we generalize the entailment detection task to apply over arbitrary text prefixes, and suggest its utility for improving generation faithfulness. Providing suitable evaluation and training datasets for this task, we train MiniTruePrefixes, a novel specialized model that better detects factual inconsistencies over text prefixes, outperforming comparable baseline NLI models by 5-14 F1 points in prefix-level entailment. We further demonstrate that integrating MiniTruePrefixes into a controlled decoding framework substantially improves factual consistency in abstractive summarization. When guided by MiniTruePrefixes, LLaMA-3.2-3B-Instruct matches the faithfulness and runtime of the 8B model from the same model family, while using only half the memory.
FOLIO: Natural Language Reasoning with First-Order Logic
We present FOLIO, a human-annotated, open-domain, and logically complex and diverse dataset for reasoning in natural language (NL), equipped with first order logic (FOL) annotations. FOLIO consists of 1,435 examples (unique conclusions), each paired with one of 487 sets of premises which serve as rules to be used to deductively reason for the validity of each conclusion. The logical correctness of premises and conclusions is ensured by their parallel FOL annotations, which are automatically verified by our FOL inference engine. In addition to the main NL reasoning task, NL-FOL pairs in FOLIO automatically constitute a new NL-FOL translation dataset using FOL as the logical form. Our experiments on FOLIO systematically evaluate the FOL reasoning ability of supervised fine-tuning on medium-sized language models (BERT, RoBERTa) and few-shot prompting on large language models (GPT-NeoX, OPT, GPT-3, Codex). For NL-FOL translation, we experiment with GPT-3 and Codex. Our results show that one of the most capable Large Language Model (LLM) publicly available, GPT-3 davinci, achieves only slightly better than random results with few-shot prompting on a subset of FOLIO, and the model is especially bad at predicting the correct truth values for False and Unknown conclusions. Our dataset and code are available at https://github.com/Yale-LILY/FOLIO.
Learning To Teach Large Language Models Logical Reasoning
Large language models (LLMs) have gained enormous attention from both academia and industry, due to their exceptional ability in language generation and extremely powerful generalization. However, current LLMs still output unreliable content in practical reasoning tasks due to their inherent issues (e.g., hallucination). To better disentangle this problem, in this paper, we conduct an in-depth investigation to systematically explore the capability of LLMs in logical reasoning. More in detail, we first investigate the deficiency of LLMs in logical reasoning on different tasks, including event relation extraction and deductive reasoning. Our study demonstrates that LLMs are not good reasoners in solving tasks with rigorous reasoning and will produce counterfactual answers, which require us to iteratively refine. Therefore, we comprehensively explore different strategies to endow LLMs with logical reasoning ability, and thus enable them to generate more logically consistent answers across different scenarios. Based on our approach, we also contribute a synthesized dataset (LLM-LR) involving multi-hop reasoning for evaluation and pre-training. Extensive quantitative and qualitative analyses on different tasks also validate the effectiveness and necessity of teaching LLMs with logic and provide insights for solving practical tasks with LLMs in future work.
Prompting Contrastive Explanations for Commonsense Reasoning Tasks
Many commonsense reasoning NLP tasks involve choosing between one or more possible answers to a question or prompt based on knowledge that is often implicit. Large pretrained language models (PLMs) can achieve near-human performance on such tasks, while providing little human-interpretable evidence of the underlying reasoning they use. In this work, we show how to use these same models to generate such evidence: inspired by the contrastive nature of human explanations, we use PLMs to complete explanation prompts which contrast alternatives according to the key attribute(s) required to justify the correct answer (for example, peanuts are usually salty while raisins are sweet). Conditioning model decisions on these explanations improves performance on two commonsense reasoning benchmarks, as compared to previous non-contrastive alternatives. These explanations are also judged by humans to be more relevant for solving the task, and facilitate a novel method to evaluate explanation faithfulfness.
CORE-MM: Complex Open-Ended Reasoning Evaluation For Multi-Modal Large Language Models
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence. These models not only excel in traditional vision-language tasks but also demonstrate impressive performance in contemporary multi-modal benchmarks. Although many of these benchmarks attempt to holistically evaluate MLLMs, they typically concentrate on basic reasoning tasks, often yielding only simple yes/no or multi-choice responses. These methods naturally lead to confusion and difficulties in conclusively determining the reasoning capabilities of MLLMs. To mitigate this issue, we manually curate a benchmark dataset specifically designed for MLLMs, with a focus on complex reasoning tasks. Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning. The queries in our dataset are intentionally constructed to engage the reasoning capabilities of MLLMs in the process of generating answers. For a fair comparison across various MLLMs, we incorporate intermediate reasoning steps into our evaluation criteria. In instances where an MLLM is unable to produce a definitive answer, its reasoning ability is evaluated by requesting intermediate reasoning steps. If these steps align with our manual annotations, appropriate scores are assigned. This evaluation scheme resembles methods commonly used in human assessments, such as exams or assignments, and represents what we consider a more effective assessment technique compared with existing benchmarks. We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark, designed to challenge and accurately measure their reasoning capabilities. The code and data will be released at https://core-mm.github.io/
Large Language Models are In-Context Semantic Reasoners rather than Symbolic Reasoners
The emergent few-shot reasoning capabilities of Large Language Models (LLMs) have excited the natural language and machine learning community over recent years. Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear. In this work, we hypothesize that the learned semantics of language tokens do the most heavy lifting during the reasoning process. Different from human's symbolic reasoning process, the semantic representations of LLMs could create strong connections among tokens, thus composing a superficial logical chain. To test our hypothesis, we decouple semantics from the language reasoning process and evaluate three kinds of reasoning abilities, i.e., deduction, induction and abduction. Our findings reveal that semantics play a vital role in LLMs' in-context reasoning -- LLMs perform significantly better when semantics are consistent with commonsense but struggle to solve symbolic or counter-commonsense reasoning tasks by leveraging in-context new knowledge. The surprising observations question whether modern LLMs have mastered the inductive, deductive and abductive reasoning abilities as in human intelligence, and motivate research on unveiling the magic existing within the black-box LLMs. On the whole, our analysis provides a novel perspective on the role of semantics in developing and evaluating language models' reasoning abilities. Code is available at {https://github.com/XiaojuanTang/ICSR}.
Structured Event Reasoning with Large Language Models
Reasoning about real-life events is a unifying challenge in AI and NLP that has profound utility in a variety of domains, while fallacy in high-stake applications could be catastrophic. Able to work with diverse text in these domains, large language models (LLMs) have proven capable of answering questions and solving problems. However, I show that end-to-end LLMs still systematically fail to reason about complex events, and they lack interpretability due to their black-box nature. To address these issues, I propose three general approaches to use LLMs in conjunction with a structured representation of events. The first is a language-based representation involving relations of sub-events that can be learned by LLMs via fine-tuning. The second is a semi-symbolic representation involving states of entities that can be predicted and leveraged by LLMs via few-shot prompting. The third is a fully symbolic representation that can be predicted by LLMs trained with structured data and be executed by symbolic solvers. On a suite of event reasoning tasks spanning common-sense inference and planning, I show that each approach greatly outperforms end-to-end LLMs with more interpretability. These results suggest manners of synergy between LLMs and structured representations for event reasoning and beyond.
Query Rewriting via Large Language Models
Query rewriting is one of the most effective techniques for coping with poorly written queries before passing them down to the query optimizer. Manual rewriting is not scalable, as it is error-prone and requires deep expertise. Similarly, traditional query rewriting algorithms can only handle a small subset of queries: rule-based techniques do not generalize to new query patterns and synthesis-based techniques cannot handle complex queries. Fortunately, the rise of Large Language Models (LLMs), equipped with broad general knowledge and advanced reasoning capabilities, has created hopes for solving some of these previously open problems. In this paper, we present GenRewrite, the first holistic system that leverages LLMs for query rewriting. We introduce the notion of Natural Language Rewrite Rules (NLR2s), and use them as hints to the LLM but also a means for transferring knowledge from rewriting one query to another, and thus becoming smarter and more effective over time. We present a novel counterexample-guided technique that iteratively corrects the syntactic and semantic errors in the rewritten query, significantly reducing the LLM costs and the manual effort required for verification. GenRewrite speeds up 22 out of 99 TPC queries (the most complex public benchmark) by more than 2x, which is 2.5x--3.2x higher coverage than state-of-the-art traditional query rewriting and 2.1x higher than the out-of-the-box LLM baseline.
Logical Reasoning with Outcome Reward Models for Test-Time Scaling
Logical reasoning is a critical benchmark for evaluating the capabilities of large language models (LLMs), as it reflects their ability to derive valid conclusions from given premises. While the combination of test-time scaling with dedicated outcome or process reward models has opened up new avenues to enhance LLMs performance in complex reasoning tasks, this space is under-explored in deductive logical reasoning. We present a set of Outcome Reward Models (ORMs) for deductive reasoning. To train the ORMs we mainly generate data using Chain-of-Thought (CoT) with single and multiple samples. Additionally, we propose a novel tactic to further expand the type of errors covered in the training dataset of the ORM. In particular, we propose an echo generation technique that leverages LLMs' tendency to reflect incorrect assumptions made in prompts to extract additional training data, covering previously unexplored error types. While a standard CoT chain may contain errors likely to be made by the reasoner, the echo strategy deliberately steers the model toward incorrect reasoning. We show that ORMs trained on CoT and echo-augmented data demonstrate improved performance on the FOLIO, JustLogic, and ProverQA datasets across four different LLMs.
Minds versus Machines: Rethinking Entailment Verification with Language Models
Humans make numerous inferences in text comprehension to understand discourse. This paper aims to understand the commonalities and disparities in the inference judgments between humans and state-of-the-art Large Language Models (LLMs). Leveraging a comprehensively curated entailment verification benchmark, we evaluate both human and LLM performance across various reasoning categories. Our benchmark includes datasets from three categories (NLI, contextual QA, and rationales) that include multi-sentence premises and different knowledge types, thereby evaluating the inference capabilities in complex reasoning instances. Notably, our findings reveal LLMs' superiority in multi-hop reasoning across extended contexts, while humans excel in tasks necessitating simple deductive reasoning. Leveraging these insights, we introduce a fine-tuned Flan-T5 model that outperforms GPT-3.5 and rivals with GPT-4, offering a robust open-source solution for entailment verification. As a practical application, we showcase the efficacy of our finetuned model in enhancing self-consistency in model-generated explanations, resulting in a 6% performance boost on average across three multiple-choice question-answering datasets.
Logical Inference for Counting on Semi-structured Tables
Recently, the Natural Language Inference (NLI) task has been studied for semi-structured tables that do not have a strict format. Although neural approaches have achieved high performance in various types of NLI, including NLI between semi-structured tables and texts, they still have difficulty in performing a numerical type of inference, such as counting. To handle a numerical type of inference, we propose a logical inference system for reasoning between semi-structured tables and texts. We use logical representations as meaning representations for tables and texts and use model checking to handle a numerical type of inference between texts and tables. To evaluate the extent to which our system can perform inference with numerical comparatives, we make an evaluation protocol that focuses on numerical understanding between semi-structured tables and texts in English. We show that our system can more robustly perform inference between tables and texts that requires numerical understanding compared with current neural approaches.
Language models show human-like content effects on reasoning
Abstract reasoning is a key ability for an intelligent system. Large language models achieve above-chance performance on abstract reasoning tasks, but exhibit many imperfections. However, human abstract reasoning is also imperfect, and depends on our knowledge and beliefs about the content of the reasoning problem. For example, humans reason much more reliably about logical rules that are grounded in everyday situations than arbitrary rules about abstract attributes. The training experiences of language models similarly endow them with prior expectations that reflect human knowledge and beliefs. We therefore hypothesized that language models would show human-like content effects on abstract reasoning problems. We explored this hypothesis across three logical reasoning tasks: natural language inference, judging the logical validity of syllogisms, and the Wason selection task (Wason, 1968). We find that state of the art large language models (with 7 or 70 billion parameters; Hoffman et al., 2022) reflect many of the same patterns observed in humans across these tasks -- like humans, models reason more effectively about believable situations than unrealistic or abstract ones. Our findings have implications for understanding both these cognitive effects, and the factors that contribute to language model performance.
A large annotated corpus for learning natural language inference
Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.
Strategies for Improving NL-to-FOL Translation with LLMs: Data Generation, Incremental Fine-Tuning, and Verification
Logical reasoning is a fundamental task in natural language processing that presents significant challenges to Large Language Models (LLMs). The inherent characteristics of logical reasoning makes it well-suited for symbolic representations such as first-order logic (FOL). Research in symbolic logical reasoning explored FOL generation using state-of-the-art LLMs (i.e., GPT-4) to produce FOL translations of natural language (NL) statements, but errors in translation are usually not the focus. We address this by categorizing the translation errors in FOL statements generated by LLMs. To make progress towards improving the quality of FOL translations for smaller language models such as LLaMA-2 13B and Mistral 7B, we create ProofFOL, a high-quality FOL-annotated subset of ProofWriter dataset using GPT-4o. The models fine-tuned on this silver standard data achieve a significant gain in performance when compared to larger language models such as LLaMA-2 70B. In addition to improving the model using large data, we also tackle the issue of data scarcity and introduce an incremental framework encompassing of data augmentation and verification steps. In the augmentation process, a single pair of (premises, conclusion) is split into multiple new instances based on the predicates and FOLs. This data is used for fine-tuning, and the inference on this model generates FOLs with fewer errors over the model trained on the original data. Our investigation on the translation errors leads to generation of a perturbation dataset, which is used to train a verifier that corrects potential syntactic and semantic FOL translation errors. We demonstrate an efficient method for making the most of a limited existing human-annotated dataset. Our results show state-of-the-art performance for ProofWriter and ProntoQA datasets using ProofFOL on LLaMA-2 and Mistral models.
Synergizing Machine Learning & Symbolic Methods: A Survey on Hybrid Approaches to Natural Language Processing
The advancement of machine learning and symbolic approaches have underscored their strengths and weaknesses in Natural Language Processing (NLP). While machine learning approaches are powerful in identifying patterns in data, they often fall short in learning commonsense and the factual knowledge required for the NLP tasks. Meanwhile, the symbolic methods excel in representing knowledge-rich data. However, they struggle to adapt dynamic data and generalize the knowledge. Bridging these two paradigms through hybrid approaches enables the alleviation of weaknesses in both while preserving their strengths. Recent studies extol the virtues of this union, showcasing promising results in a wide range of NLP tasks. In this paper, we present an overview of hybrid approaches used for NLP. Specifically, we delve into the state-of-the-art hybrid approaches used for a broad spectrum of NLP tasks requiring natural language understanding, generation, and reasoning. Furthermore, we discuss the existing resources available for hybrid approaches for NLP along with the challenges and future directions, offering a roadmap for future research avenues.
Efficient Tool Use with Chain-of-Abstraction Reasoning
To achieve faithful reasoning that aligns with human expectations, large language models (LLMs) need to ground their reasoning to real-world knowledge (e.g., web facts, math and physical rules). Tools help LLMs access this external knowledge, but there remains challenges for fine-tuning LLM agents (e.g., Toolformer) to invoke tools in multi-step reasoning problems, where inter-connected tool calls require holistic and efficient tool usage planning. In this work, we propose a new method for LLMs to better leverage tools in multi-step reasoning. Our method, Chain-of-Abstraction (CoA), trains LLMs to first decode reasoning chains with abstract placeholders, and then call domain tools to reify each reasoning chain by filling in specific knowledge. This planning with abstract chains enables LLMs to learn more general reasoning strategies, which are robust to shifts of domain knowledge (e.g., math results) relevant to different reasoning questions. It also allows LLMs to perform decoding and calling of external tools in parallel, which avoids the inference delay caused by waiting for tool responses. In mathematical reasoning and Wiki QA domains, we show that our method consistently outperforms previous chain-of-thought and tool-augmented baselines on both in-distribution and out-of-distribution test sets, with an average ~6% absolute QA accuracy improvement. LLM agents trained with our method also show more efficient tool use, with inference speed being on average ~1.4x faster than baseline tool-augmented LLMs.
Self-Critique and Refinement for Faithful Natural Language Explanations
With the rapid development of large language models (LLMs), natural language explanations (NLEs) have become increasingly important for understanding model predictions. However, these explanations often fail to faithfully represent the model's actual reasoning process. While existing work has demonstrated that LLMs can self-critique and refine their initial outputs for various tasks, this capability remains unexplored for improving explanation faithfulness. To address this gap, we introduce Self-critique and Refinement for Natural Language Explanations (SR-NLE), a framework that enables models to improve the faithfulness of their own explanations -- specifically, post-hoc NLEs -- through an iterative critique and refinement process without external supervision. Our framework leverages different feedback mechanisms to guide the refinement process, including natural language self-feedback and, notably, a novel feedback approach based on feature attribution that highlights important input words. Our experiments across three datasets and four state-of-the-art LLMs demonstrate that SR-NLE significantly reduces unfaithfulness rates, with our best method achieving an average unfaithfulness rate of 36.02%, compared to 54.81% for baseline -- an absolute reduction of 18.79%. These findings reveal that the investigated LLMs can indeed refine their explanations to better reflect their actual reasoning process, requiring only appropriate guidance through feedback without additional training or fine-tuning.
Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models
Language has long been conceived as an essential tool for human reasoning. The breakthrough of Large Language Models (LLMs) has sparked significant research interest in leveraging these models to tackle complex reasoning tasks. Researchers have moved beyond simple autoregressive token generation by introducing the concept of "thought" -- a sequence of tokens representing intermediate steps in the reasoning process. This innovative paradigm enables LLMs' to mimic complex human reasoning processes, such as tree search and reflective thinking. Recently, an emerging trend of learning to reason has applied reinforcement learning (RL) to train LLMs to master reasoning processes. This approach enables the automatic generation of high-quality reasoning trajectories through trial-and-error search algorithms, significantly expanding LLMs' reasoning capacity by providing substantially more training data. Furthermore, recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can further significantly boost reasoning accuracy. Therefore, the train-time and test-time scaling combined to show a new research frontier -- a path toward Large Reasoning Model. The introduction of OpenAI's o1 series marks a significant milestone in this research direction. In this survey, we present a comprehensive review of recent progress in LLM reasoning. We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling. We also analyze popular open-source projects at building large reasoning models, and conclude with open challenges and future research directions.
Certified Reasoning with Language Models
Language models often achieve higher accuracy when reasoning step-by-step in complex tasks. However, their reasoning can be unsound, inconsistent, or rely on undesirable prior assumptions. To tackle these issues, we introduce a class of tools for language models called guides that use state and incremental constraints to guide generation. A guide can be invoked by the model to constrain its own generation to a set of valid statements given by the tool. In turn, the model's choices can change the guide's state. We show how a general system for logical reasoning can be used as a guide, which we call LogicGuide. Given a reasoning problem in natural language, a model can formalize its assumptions for LogicGuide and then guarantee that its reasoning steps are sound. In experiments with the PrOntoQA and ProofWriter reasoning datasets, LogicGuide significantly improves the performance of GPT-3, GPT-3.5 Turbo and LLaMA (accuracy gains up to 35%). LogicGuide also drastically reduces content effects: the interference of prior and current assumptions that both humans and language models have been shown to suffer from. Finally, we explore bootstrapping LLaMA 13B from its own reasoning and find that LogicGuide is critical: by training only on certified self-generated reasoning, LLaMA can self-improve, avoiding learning from its own hallucinations.
SemEval-2023 Task 7: Multi-Evidence Natural Language Inference for Clinical Trial Data
This paper describes the results of SemEval 2023 task 7 -- Multi-Evidence Natural Language Inference for Clinical Trial Data (NLI4CT) -- consisting of 2 tasks, a Natural Language Inference (NLI) task, and an evidence selection task on clinical trial data. The proposed challenges require multi-hop biomedical and numerical reasoning, which are of significant importance to the development of systems capable of large-scale interpretation and retrieval of medical evidence, to provide personalized evidence-based care. Task 1, the entailment task, received 643 submissions from 40 participants, and Task 2, the evidence selection task, received 364 submissions from 23 participants. The tasks are challenging, with the majority of submitted systems failing to significantly outperform the majority class baseline on the entailment task, and we observe significantly better performance on the evidence selection task than on the entailment task. Increasing the number of model parameters leads to a direct increase in performance, far more significant than the effect of biomedical pre-training. Future works could explore the limitations of large models for generalization and numerical inference, and investigate methods to augment clinical datasets to allow for more rigorous testing and to facilitate fine-tuning. We envisage that the dataset, models, and results of this task will be useful to the biomedical NLI and evidence retrieval communities. The dataset, competition leaderboard, and website are publicly available.
A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Reproducibility
Reasoning has emerged as the next major frontier for language models (LMs), with rapid advances from both academic and industrial labs. However, this progress often outpaces methodological rigor, with many evaluations relying on benchmarking practices that lack transparency, robustness, or statistical grounding. In this work, we conduct a comprehensive empirical study and find that current mathematical reasoning benchmarks are highly sensitive to subtle implementation choices - including decoding parameters, random seeds, prompt formatting, and even hardware and software-framework configurations. Performance gains reported in recent studies frequently hinge on unclear comparisons or unreported sources of variance. To address these issues, we propose a standardized evaluation framework with clearly defined best practices and reporting standards. Using this framework, we reassess recent methods and find that reinforcement learning (RL) approaches yield only modest improvements - far below prior claims - and are prone to overfitting, especially on small-scale benchmarks like AIME24. In contrast, supervised finetuning (SFT) methods show consistently stronger generalization. To foster reproducibility, we release all code, prompts, and model outputs, for reasoning benchmarks, establishing more rigorous foundations for future work.
Critical Thinking for Language Models
This paper takes a first step towards a critical thinking curriculum for neural auto-regressive language models. We introduce a synthetic corpus of deductively valid arguments, and generate artificial argumentative texts to train and evaluate GPT-2. Significant transfer learning effects can be observed: Training a model on three simple core schemes allows it to accurately complete conclusions of different, and more complex types of arguments, too. The language models generalize the core argument schemes in a correct way. Moreover, we obtain consistent and promising results for NLU benchmarks. In particular, pre-training on the argument schemes raises zero-shot accuracy on the GLUE diagnostics by up to 15 percentage points. The findings suggest that intermediary pre-training on texts that exemplify basic reasoning abilities (such as typically covered in critical thinking textbooks) might help language models to acquire a broad range of reasoning skills. The synthetic argumentative texts presented in this paper are a promising starting point for building such a "critical thinking curriculum for language models."
Evaluating the Meta- and Object-Level Reasoning of Large Language Models for Question Answering
Large Language Models (LLMs) excel in natural language tasks but still face challenges in Question Answering (QA) tasks requiring complex, multi-step reasoning. We outline the types of reasoning required in some of these tasks, and reframe them in terms of meta-level reasoning (akin to high-level strategic reasoning or planning) and object-level reasoning (embodied in lower-level tasks such as mathematical reasoning). Franklin, a novel dataset with requirements of meta- and object-level reasoning, is introduced and used along with three other datasets to evaluate four LLMs at question answering tasks requiring multiple steps of reasoning. Results from human annotation studies suggest LLMs demonstrate meta-level reasoning with high frequency, but struggle with object-level reasoning tasks in some of the datasets used. Additionally, evidence suggests that LLMs find the object-level reasoning required for the questions in the Franklin dataset challenging, yet they do exhibit strong performance with respect to the meta-level reasoning requirements.
True Detective: A Deep Abductive Reasoning Benchmark Undoable for GPT-3 and Challenging for GPT-4
Large language models (LLMs) have demonstrated solid zero-shot reasoning capabilities, which is reflected in their performance on the current test tasks. This calls for a more challenging benchmark requiring highly advanced reasoning ability to be solved. In this paper, we introduce such a benchmark, consisting of 191 long-form (1200 words on average) mystery narratives constructed as detective puzzles. Puzzles are sourced from the "5 Minute Mystery" platform and include a multiple-choice question for evaluation. Only 47% of humans solve a puzzle successfully on average, while the best human solvers achieve over 80% success rate. We show that GPT-3 models barely outperform random on this benchmark (with 28% accuracy) while state-of-the-art GPT-4 solves only 38% of puzzles. This indicates that there is still a significant gap in the deep reasoning abilities of LLMs and humans and highlights the need for further research in this area. Our work introduces a challenging benchmark for future studies on reasoning in language models and contributes to a better understanding of the limits of LLMs' abilities.
LINC: A Neurosymbolic Approach for Logical Reasoning by Combining Language Models with First-Order Logic Provers
Logical reasoning, i.e., deductively inferring the truth value of a conclusion from a set of premises, is an important task for artificial intelligence with wide potential impacts on science, mathematics, and society. While many prompting-based strategies have been proposed to enable Large Language Models (LLMs) to do such reasoning more effectively, they still appear unsatisfactory, often failing in subtle and unpredictable ways. In this work, we investigate the validity of instead reformulating such tasks as modular neurosymbolic programming, which we call LINC: Logical Inference via Neurosymbolic Computation. In LINC, the LLM acts as a semantic parser, translating premises and conclusions from natural language to expressions in first-order logic. These expressions are then offloaded to an external theorem prover, which symbolically performs deductive inference. Leveraging this approach, we observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate. On ProofWriter, augmenting the comparatively small open-source StarCoder+ (15.5B parameters) with LINC even outperforms GPT-3.5 and GPT-4 with Chain-of-Thought (CoT) prompting by an absolute 38% and 10%, respectively. When used with GPT-4, LINC scores 26% higher than CoT on ProofWriter while performing comparatively on FOLIO. Further analysis reveals that although both methods on average succeed roughly equally often on this dataset, they exhibit distinct and complementary failure modes. We thus provide promising evidence for how logical reasoning over natural language can be tackled through jointly leveraging LLMs alongside symbolic provers. All corresponding code is publicly available at https://github.com/benlipkin/linc
Seemingly Plausible Distractors in Multi-Hop Reasoning: Are Large Language Models Attentive Readers?
State-of-the-art Large Language Models (LLMs) are accredited with an increasing number of different capabilities, ranging from reading comprehension, over advanced mathematical and reasoning skills to possessing scientific knowledge. In this paper we focus on their multi-hop reasoning capability: the ability to identify and integrate information from multiple textual sources. Given the concerns with the presence of simplifying cues in existing multi-hop reasoning benchmarks, which allow models to circumvent the reasoning requirement, we set out to investigate, whether LLMs are prone to exploiting such simplifying cues. We find evidence that they indeed circumvent the requirement to perform multi-hop reasoning, but they do so in more subtle ways than what was reported about their fine-tuned pre-trained language model (PLM) predecessors. Motivated by this finding, we propose a challenging multi-hop reasoning benchmark, by generating seemingly plausible multi-hop reasoning chains, which ultimately lead to incorrect answers. We evaluate multiple open and proprietary state-of-the-art LLMs, and find that their performance to perform multi-hop reasoning is affected, as indicated by up to 45% relative decrease in F1 score when presented with such seemingly plausible alternatives. We conduct a deeper analysis and find evidence that while LLMs tend to ignore misleading lexical cues, misleading reasoning paths indeed present a significant challenge.
NaturalProver: Grounded Mathematical Proof Generation with Language Models
Theorem proving in natural mathematical language - the mixture of symbolic and natural language used by humans - plays a central role in mathematical advances and education, and tests aspects of reasoning that are core to intelligence. Yet it has remained underexplored with modern generative models. We study large-scale language models on two new generation tasks: suggesting the next step in a mathematical proof, and full proof generation. We develop NaturalProver, a language model that generates proofs by conditioning on background references (e.g. theorems and definitions that are either retrieved or human-provided), and optionally enforces their presence with constrained decoding. On theorems from the NaturalProofs benchmark, NaturalProver improves the quality of next-step suggestions and generated proofs over fine-tuned GPT-3, according to human evaluations from university-level mathematics students. NaturalProver is capable of proving some theorems that require short (2-6 step) proofs, and providing next-step suggestions that are rated as correct and useful over 40% of the time, which is to our knowledge the first demonstration of these capabilities using neural language models.
ASTRO: Teaching Language Models to Reason by Reflecting and Backtracking In-Context
We introduce ASTRO, the "Autoregressive Search-Taught Reasoner", a framework for training language models to reason like search algorithms, explicitly leveraging self-reflection, backtracking, and exploration in their outputs. Recently, training large language models (LLMs) via reinforcement learning (RL) has led to the advent of reasoning models with greatly enhanced reasoning capabilities. Open-source replications of reasoning models, while successful, build upon models that already exhibit strong reasoning capabilities along with search behavior observed even before RL. As a result, it is yet unclear how to boost the reasoning capabilities of other non-reasoner models including Llama 3. ASTRO teaches such models to internalize structured search behavior through a synthetic dataset derived from Monte Carlo Tree Search (MCTS) over mathematical problem-solving trajectories. By converting search traces into natural language chain-of-thoughts that capture both successes and recoveries from failure, ASTRO bootstraps models with a rich prior for exploration during RL. We finetune our models on these search-derived traces and further improve performance via RL with verifiable rewards. We apply ASTRO to the Llama 3 family of models and achieve absolute performance gains of 16.0% on MATH-500, 26.9% on AMC 2023, and 20.0% on AIME 2024, especially improving upon challenging problems that require iterative correction. Our results demonstrate that search-inspired training offers a principled way to instill robust reasoning capabilities into open LLMs.
SciDA: Scientific Dynamic Assessor of LLMs
Advancement in Large Language Models (LLMs) reasoning capabilities enables them to solve scientific problems with enhanced efficacy. Thereby, a high-quality benchmark for comprehensive and appropriate assessment holds significance, while existing ones either confront the risk of data contamination or lack involved disciplines. To be specific, due to the data source overlap of LLMs training and static benchmark, the keys or number pattern of answers inadvertently memorized (i.e. data contamination), leading to systematic overestimation of their reasoning capabilities, especially numerical reasoning. We propose SciDA, a multidisciplinary benchmark that consists exclusively of over 1k Olympic-level numerical computation problems, allowing randomized numerical initializations for each inference round to avoid reliance on fixed numerical patterns. We conduct a series of experiments with both closed-source and open-source top-performing LLMs, and it is observed that the performance of LLMs drop significantly under random numerical initialization. Thus, we provide truthful and unbiased assessments of the numerical reasoning capabilities of LLMs. The data is available at https://huggingface.co/datasets/m-a-p/SciDA
Reasoning Models Reason Well, Until They Don't
Large language models (LLMs) have shown significant progress in reasoning tasks. However, recent studies show that transformers and LLMs fail catastrophically once reasoning problems exceed modest complexity. We revisit these findings through the lens of large reasoning models (LRMs) -- LLMs fine-tuned with incentives for step-by-step argumentation and self-verification. LRM performance on graph and reasoning benchmarks such as NLGraph seem extraordinary, with some even claiming they are capable of generalized reasoning and innovation in reasoning-intensive fields such as mathematics, physics, medicine, and law. However, by more carefully scaling the complexity of reasoning problems, we show existing benchmarks actually have limited complexity. We develop a new dataset, the Deep Reasoning Dataset (DeepRD), along with a generative process for producing unlimited examples of scalable complexity. We use this dataset to evaluate model performance on graph connectivity and natural language proof planning. We find that the performance of LRMs drop abruptly at sufficient complexity and do not generalize. We also relate our LRM results to the distributions of the complexities of large, real-world knowledge graphs, interaction graphs, and proof datasets. We find the majority of real-world examples fall inside the LRMs' success regime, yet the long tails expose substantial failure potential. Our analysis highlights the near-term utility of LRMs while underscoring the need for new methods that generalize beyond the complexity of examples in the training distribution.
ALR^2: A Retrieve-then-Reason Framework for Long-context Question Answering
The context window of large language models (LLMs) has been extended significantly in recent years. However, while the context length that the LLM can process has grown, the capability of the model to accurately reason over that context degrades noticeably. This occurs because modern LLMs often become overwhelmed by the vast amount of information in the context; when answering questions, the model must identify and reason over relevant evidence sparsely distributed throughout the text. To alleviate the challenge of long-context reasoning, we develop a retrieve-then-reason framework, enabling LLMs to reason over relevant evidence collected during an intermediate retrieval step. We find that modern LLMs struggle to accurately retrieve relevant facts and instead, often hallucinate "retrieved facts", resulting in flawed reasoning and the production of incorrect answers. To address these issues, we introduce ALR^2, a method that augments the long-context reasoning capability of LLMs via an explicit two-stage procedure, i.e., aligning LLMs with the objectives of both retrieval and reasoning. We demonstrate the efficacy of ALR^2 for mitigating performance degradation in long-context reasoning tasks. Through extensive experiments on long-context QA benchmarks, we find our method to outperform competitive baselines by large margins, achieving at least 8.4 and 7.9 EM gains on the long-context versions of HotpotQA and SQuAD datasets, respectively.
Applications of Large Language Model Reasoning in Feature Generation
Large Language Models (LLMs) have revolutionized natural language processing through their state of art reasoning capabilities. This paper explores the convergence of LLM reasoning techniques and feature generation for machine learning tasks. We examine four key reasoning approaches: Chain of Thought, Tree of Thoughts, Retrieval-Augmented Generation, and Thought Space Exploration. Our analysis reveals how these approaches can be used to identify effective feature generation rules without having to manually specify search spaces. The paper categorizes LLM-based feature generation methods across various domains including finance, healthcare, and text analytics. LLMs can extract key information from clinical notes and radiology reports in healthcare, by enabling more efficient data utilization. In finance, LLMs facilitate text generation, summarization, and entity extraction from complex documents. We analyze evaluation methodologies for assessing feature quality and downstream performance, with particular attention to OCTree's decision tree reasoning approach that provides language-based feedback for iterative improvements. Current challenges include hallucination, computational efficiency, and domain adaptation. As of March 2025, emerging approaches include inference-time compute scaling, reinforcement learning, and supervised fine-tuning with model distillation. Future directions point toward multimodal feature generation, self-improving systems, and neuro-symbolic approaches. This paper provides a detailed overview of an emerging field that promises to automate and enhance feature engineering through language model reasoning.
Understanding and Tackling Label Errors in Individual-Level Nature Language Understanding
Natural language understanding (NLU) is a task that enables machines to understand human language. Some tasks, such as stance detection and sentiment analysis, are closely related to individual subjective perspectives, thus termed individual-level NLU. Previously, these tasks are often simplified to text-level NLU tasks, ignoring individual factors. This not only makes inference difficult and unexplainable but often results in a large number of label errors when creating datasets. To address the above limitations, we propose a new NLU annotation guideline based on individual-level factors. Specifically, we incorporate other posts by the same individual and then annotate individual subjective perspectives after considering all individual posts. We use this guideline to expand and re-annotate the stance detection and topic-based sentiment analysis datasets. We find that error rates in the samples were as high as 31.7\% and 23.3\%. We further use large language models to conduct experiments on the re-annotation datasets and find that the large language models perform well on both datasets after adding individual factors. Both GPT-4o and Llama3-70B can achieve an accuracy greater than 87\% on the re-annotation datasets. We also verify the effectiveness of individual factors through ablation studies. We call on future researchers to add individual factors when creating such datasets. Our re-annotation dataset can be found at https://github.com/24yearsoldstudent/Individual-NLU
Extractive Fact Decomposition for Interpretable Natural Language Inference in one Forward Pass
Recent works in Natural Language Inference (NLI) and related tasks, such as automated fact-checking, employ atomic fact decomposition to enhance interpretability and robustness. For this, existing methods rely on resource-intensive generative large language models (LLMs) to perform decomposition. We propose JEDI, an encoder-only architecture that jointly performs extractive atomic fact decomposition and interpretable inference without requiring generative models during inference. To facilitate training, we produce a large corpus of synthetic rationales covering multiple NLI benchmarks. Experimental results demonstrate that JEDI achieves competitive accuracy in distribution and significantly improves robustness out of distribution and in adversarial settings over models based solely on extractive rationale supervision. Our findings show that interpretability and robust generalization in NLI can be realized using encoder-only architectures and synthetic rationales. Code and data available at https://jedi.nicpopovic.com
Full Automation of Goal-driven LLM Dialog Threads with And-Or Recursors and Refiner Oracles
We automate deep step-by step reasoning in an LLM dialog thread by recursively exploring alternatives (OR-nodes) and expanding details (AND-nodes) up to a given depth. Starting from a single succinct task-specific initiator we steer the automated dialog thread to stay focussed on the task by synthesizing a prompt that summarizes the depth-first steps taken so far. Our algorithm is derived from a simple recursive descent implementation of a Horn Clause interpreter, except that we accommodate our logic engine to fit the natural language reasoning patterns LLMs have been trained on. Semantic similarity to ground-truth facts or oracle advice from another LLM instance is used to restrict the search space and validate the traces of justification steps returned as answers. At the end, the unique minimal model of a generated Horn Clause program collects the results of the reasoning process. As applications, we sketch implementations of consequence predictions, causal explanations, recommendation systems and topic-focussed exploration of scientific literature.
Language Models Do Not Follow Occam's Razor: A Benchmark for Inductive and Abductive Reasoning
Reasoning is a core capability in artificial intelligence systems, for which large language models (LLMs) have recently shown remarkable progress. However, most work focuses exclusively on deductive reasoning, which is problematic since other types of reasoning are also essential in solving real-world problems, and they are less explored. This work focuses on evaluating LLMs' inductive and abductive reasoning capabilities. We introduce a programmable and synthetic dataset, InAbHyD (pronounced in-a-bid), where each reasoning example consists of an incomplete world model and a set of observations. The task for the intelligent agent is to produce hypotheses to explain observations under the incomplete world model to solve each reasoning example. We propose a new metric to evaluate the quality of hypotheses based on Occam's Razor. We evaluate and analyze some state-of-the-art LLMs. Our analysis shows that LLMs can perform inductive and abductive reasoning in simple scenarios, but struggle with complex world models and producing high-quality hypotheses, even with popular reasoning-enhancing techniques such as in-context learning and RLVR.
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
Recurrent Aggregators in Neural Algorithmic Reasoning
Neural algorithmic reasoning (NAR) is an emerging field that seeks to design neural networks that mimic classical algorithmic computations. Today, graph neural networks (GNNs) are widely used in neural algorithmic reasoners due to their message passing framework and permutation equivariance. In this extended abstract, we challenge this design choice, and replace the equivariant aggregation function with a recurrent neural network. While seemingly counter-intuitive, this approach has appropriate grounding when nodes have a natural ordering -- and this is the case frequently in established reasoning benchmarks like CLRS-30. Indeed, our recurrent NAR (RNAR) model performs very strongly on such tasks, while handling many others gracefully. A notable achievement of RNAR is its decisive state-of-the-art result on the Heapsort and Quickselect tasks, both deemed as a significant challenge for contemporary neural algorithmic reasoners -- especially the latter, where RNAR achieves a mean micro-F1 score of 87%.
Transformers as Soft Reasoners over Language
Beginning with McCarthy's Advice Taker (1959), AI has pursued the goal of providing a system with explicit, general knowledge and having the system reason over that knowledge. However, expressing the knowledge in a formal (logical or probabilistic) representation has been a major obstacle to this research. This paper investigates a modern approach to this problem where the facts and rules are provided as natural language sentences, thus bypassing a formal representation. We train transformers to reason (or emulate reasoning) over these sentences using synthetically generated data. Our models, that we call RuleTakers, provide the first empirical demonstration that this kind of soft reasoning over language is learnable, can achieve high (99%) accuracy, and generalizes to test data requiring substantially deeper chaining than seen during training (95%+ scores). We also demonstrate that the models transfer well to two hand-authored rulebases, and to rulebases paraphrased into more natural language. These findings are significant as it suggests a new role for transformers, namely as limited "soft theorem provers" operating over explicit theories in language. This in turn suggests new possibilities for explainability, correctability, and counterfactual reasoning in question-answering.
Can Retriever-Augmented Language Models Reason? The Blame Game Between the Retriever and the Language Model
Augmenting pretrained language models with retrievers to select the supporting documents has shown promise in effectively solving common NLP problems, including language modeling and question answering, in an interpretable way. In this paper, we first study the strengths and weaknesses of different retriever-augmented language models (REALM, kNN-LM, FiD coupled with DPR, and ATLAS and Flan-T5 coupled with Contriever) in reasoning over the retrieved statements in different tasks. We show how the retrieve-then-read models' limitations in reasoning are rooted both in the retriever module as well as the language model. Our experimental results demonstrate that the similarity metric used by the retrievers is generally insufficient for reasoning tasks. Additionally, we show that the language models in retriever-augmented models do not take the complicated relations between the statements into account, which leads to poor reasoning performance even when using the larger models. Moreover, we analyze the reasoning performance of large language models using multihop retrieval but we only observe minor improvements. Overall, this shows great room for further research in this area.
Benchmarking Multi-Step Legal Reasoning and Analyzing Chain-of-Thought Effects in Large Language Models
Large language models (LLMs) have demonstrated strong reasoning abilities across specialized domains, motivating research into their application to legal reasoning. However, existing legal benchmarks often conflate factual recall with genuine inference, fragment the reasoning process, and overlook the quality of reasoning. To address these limitations, we introduce MSLR, the first Chinese multi-step legal reasoning dataset grounded in real-world judicial decision making. MSLR adopts the IRAC framework (Issue, Rule, Application, Conclusion) to model structured expert reasoning from official legal documents. In addition, we design a scalable Human-LLM collaborative annotation pipeline that efficiently produces fine-grained step-level reasoning annotations and provides a reusable methodological framework for multi-step reasoning datasets. Evaluation of multiple LLMs on MSLR shows only moderate performance, highlighting the challenges of adapting to complex legal reasoning. Further experiments demonstrate that Self-Initiated Chain-of-Thought prompts generated by models autonomously improve reasoning coherence and quality, outperforming human-designed prompts. MSLR contributes to advancing LLM reasoning and Chain-of-Thought strategies and offers open resources for future research. The dataset and code are available at https://github.com/yuwenhan07/MSLR-Bench and https://law.sjtu.edu.cn/flszyjzx/index.html.
Reasoning Language Models: A Blueprint
Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAI's o1 and o3, DeepSeek-V3, and Alibaba's QwQ, have redefined AI's problem-solving capabilities by extending large language models (LLMs) with advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures - uniquely combining Reinforcement Learning (RL), search heuristics, and LLMs - present accessibility and scalability challenges. To address these, we propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies (e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), and supervision schemes (Output-Based and Process-Based Supervision). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models, and the importance of familiar training distributions. Finally, we outline how RLMs can integrate with a broader LLM ecosystem, including tools and databases. Our work demystifies RLM construction, democratizes advanced reasoning capabilities, and fosters innovation, aiming to mitigate the gap between "rich AI" and "poor AI" by lowering barriers to RLM development and experimentation.
MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time
Although Large Language Models (LLMs) achieve remarkable performance across various tasks, they often struggle with complex reasoning tasks, such as answering mathematical questions. Recent efforts to address this issue have primarily focused on leveraging mathematical datasets through supervised fine-tuning or self-improvement techniques. However, these methods often depend on high-quality datasets that are difficult to prepare, or they require substantial computational resources for fine-tuning. Inspired by findings that LLMs know how to produce the right answer but struggle to select the correct reasoning path, we propose a purely inference-based searching method -- MindStar (M*). This method formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths. We evaluate the M* framework on both the GSM8K and MATH datasets, comparing its performance with existing open and closed-source LLMs. Our results demonstrate that M* significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1, but with substantially reduced model size and computational costs.
Beyond Chains of Thought: Benchmarking Latent-Space Reasoning Abilities in Large Language Models
Large language models (LLMs) can perform reasoning computations both internally within their latent space and externally by generating explicit token sequences like chains of thought. Significant progress in enhancing reasoning abilities has been made by scaling test-time compute. However, understanding and quantifying model-internal reasoning abilities - the inferential "leaps" models make between individual token predictions - remains crucial. This study introduces a benchmark (n = 4,000 items) designed to quantify model-internal reasoning in different domains. We achieve this by having LLMs indicate the correct solution to reasoning problems not through descriptive text, but by selecting a specific language of their initial response token that is different from English, the benchmark language. This not only requires models to reason beyond their context window, but also to overrise their default tendency to respond in the same language as the prompt, thereby posing an additional cognitive strain. We evaluate a set of 18 LLMs, showing significant performance variations, with GPT-4.5 achieving the highest accuracy (74.7%), outperforming models like Grok-2 (67.2%), and Llama 3.1 405B (65.6%). Control experiments and difficulty scaling analyses suggest that while LLMs engage in internal reasoning, we cannot rule out heuristic exploitations under certain conditions, marking an area for future investigation. Our experiments demonstrate that LLMs can "think" via latent-space computations, revealing model-internal inference strategies that need further understanding, especially regarding safety-related concerns such as covert planning, goal-seeking, or deception emerging without explicit token traces.
mSCoRe: a Multilingual and Scalable Benchmark for Skill-based Commonsense Reasoning
Recent advancements in reasoning-reinforced Large Language Models (LLMs) have shown remarkable capabilities in complex reasoning tasks. However, the mechanism underlying their utilization of different human reasoning skills remains poorly investigated, especially for multilingual commonsense reasoning that involves everyday knowledge across different languages and cultures. To address this gap, we propose a Multilingual and Scalable Benchmark for Skill-based Commonsense Reasoning (mSCoRe). Our benchmark incorporates three key components that are designed to systematically evaluate LLM's reasoning capabilities, including: (1) a novel taxonomy of reasoning skills that enables fine-grained analysis of models' reasoning processes, (2) a robust data synthesis pipeline tailored specifically for commonsense reasoning evaluation, and (3) a complexity scaling framework allowing task difficulty to scale dynamically alongside future improvements in LLM abilities. Extensive experiments on eights state-of-the-art LLMs of varying sizes and training approaches demonstrate that mSCoRe remains significantly challenging for current models, particularly at higher complexity levels. Our results reveal the limitations of such reasoning-reinforced models when confronted with nuanced multilingual general and cultural commonsense. We further provide detailed analysis on the models' reasoning processes, suggesting future directions for improving multilingual commonsense reasoning capabilities.
The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning
Does prompting a large language model (LLM) like GPT-3 with explanations improve in-context learning? We study this question on two NLP tasks that involve reasoning over text, namely question answering and natural language inference. We test the performance of four LLMs on three textual reasoning datasets using prompts that include explanations in multiple different styles. For these tasks, we find that including explanations in the prompts for OPT, GPT-3 (davinci), and InstructGPT (text-davinci-001) only yields small to moderate accuracy improvements over standard few-show learning. However, text-davinci-002 is able to benefit more substantially. We further show that explanations generated by the LLMs may not entail the models' predictions nor be factually grounded in the input, even on simple tasks with extractive explanations. However, these flawed explanations can still be useful as a way to verify LLMs' predictions post-hoc. Through analysis in our three settings, we show that explanations judged by humans to be good--logically consistent with the input and the prediction--more likely cooccur with accurate predictions. Following these observations, we train calibrators using automatically extracted scores that assess the reliability of explanations, allowing us to improve performance post-hoc across all of our datasets.
Hypothesis Search: Inductive Reasoning with Language Models
Inductive reasoning is a core problem-solving capacity: humans can identify underlying principles from a few examples, which can then be robustly generalized to novel scenarios. Recent work has evaluated large language models (LLMs) on inductive reasoning tasks by directly prompting them yielding "in context learning." This can work well for straightforward inductive tasks, but performs very poorly on more complex tasks such as the Abstraction and Reasoning Corpus (ARC). In this work, we propose to improve the inductive reasoning ability of LLMs by generating explicit hypotheses at multiple levels of abstraction: we prompt the LLM to propose multiple abstract hypotheses about the problem, in natural language, then implement the natural language hypotheses as concrete Python programs. These programs can be directly verified by running on the observed examples and generalized to novel inputs. Because of the prohibitive cost of generation with state-of-the-art LLMs, we consider a middle step to filter the set of hypotheses that will be implemented into programs: we either ask the LLM to summarize into a smaller set of hypotheses, or ask human annotators to select a subset of the hypotheses. We verify our pipeline's effectiveness on the ARC visual inductive reasoning benchmark, its variant 1D-ARC, and string transformation dataset SyGuS. On a random 40-problem subset of ARC, our automated pipeline using LLM summaries achieves 27.5% accuracy, significantly outperforming the direct prompting baseline (accuracy of 12.5%). With the minimal human input of selecting from LLM-generated candidates, the performance is boosted to 37.5%. (And we argue this is a lower bound on the performance of our approach without filtering.) Our ablation studies show that abstract hypothesis generation and concrete program representations are both beneficial for LLMs to perform inductive reasoning tasks.
RobustLR: Evaluating Robustness to Logical Perturbation in Deductive Reasoning
Transformers have been shown to be able to perform deductive reasoning on a logical rulebase containing rules and statements written in English natural language. While the progress is promising, it is currently unclear if these models indeed perform logical reasoning by understanding the underlying logical semantics in the language. To this end, we propose RobustLR, a suite of evaluation datasets that evaluate the robustness of these models to minimal logical edits in rulebases and some standard logical equivalence conditions. In our experiments with RoBERTa and T5, we find that the models trained in prior works do not perform consistently on the different perturbations in RobustLR, thus showing that the models are not robust to the proposed logical perturbations. Further, we find that the models find it especially hard to learn logical negation and disjunction operators. Overall, using our evaluation sets, we demonstrate some shortcomings of the deductive reasoning-based language models, which can eventually help towards designing better models for logical reasoning over natural language. All the datasets and code base have been made publicly available.
MR-BEN: A Comprehensive Meta-Reasoning Benchmark for Large Language Models
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making, largely based on the step-by-step chain-of-thought reasoning processes. However, it has been increasingly challenging to evaluate the reasoning capability of LLMs. Concretely, existing outcome-based benchmarks begin to saturate and become less sufficient to monitor the progress. To this end, we present a process-based benchmark MR-BEN that demands a meta reasoning skill, where LMs are asked to locate and analyse potential errors in automatically generated reasoning steps. MR-BEN is a comprehensive benchmark comprising 5,975 questions collected from human experts, covering various subjects such as physics, chemistry, logic, coding, and more. Through our designed metrics for assessing meta-reasoning on this benchmark, we identify interesting limitations and weaknesses of current LLMs (open-source and closed-source models). For example, open-source models are seemingly comparable to GPT-4 on outcome-based benchmarks, but they lag far behind on our benchmark, revealing the underlying reasoning capability gap between them. Our dataset and codes are available on https://randolph-zeng.github.io/Mr-Ben.github.io/.
Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning
Large language models (LLMs) have been shown to be capable of impressive few-shot generalisation to new tasks. However, they still tend to perform poorly on multi-step logical reasoning problems. Here we carry out a comprehensive evaluation of LLMs on 50 tasks that probe different aspects of logical reasoning. We show that language models tend to perform fairly well at single step inference or entailment tasks, but struggle to chain together multiple reasoning steps to solve more complex problems. In light of this, we propose a Selection-Inference (SI) framework that exploits pre-trained LLMs as general processing modules, and alternates between selection and inference to generate a series of interpretable, casual reasoning steps leading to the final answer. We show that a 7B parameter LLM used within the SI framework in a 5-shot generalisation setting, with no fine-tuning, yields a performance improvement of over 100% compared to an equivalent vanilla baseline on a suite of 10 logical reasoning tasks. The same model in the same setting even outperforms a significantly larger 280B parameter baseline on the same suite of tasks. Moreover, answers produced by the SI framework are accompanied by a causal natural-language-based reasoning trace, which has important implications for the safety and trustworthiness of the system.
