- Characterization of Large Language Model Development in the Datacenter Large Language Models (LLMs) have presented impressive performance across several transformative tasks. However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs, often riddled with numerous challenges such as frequent hardware failures, intricate parallelization strategies, and imbalanced resource utilization. In this paper, we present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme. Specifically, we investigate discrepancies between LLMs and prior task-specific Deep Learning (DL) workloads, explore resource utilization patterns, and identify the impact of various job failures. Our analysis summarizes hurdles we encountered and uncovers potential opportunities to optimize systems tailored for LLMs. Furthermore, we introduce our system efforts: (1) fault-tolerant pretraining, which enhances fault tolerance through LLM-involved failure diagnosis and automatic recovery. (2) decoupled scheduling for evaluation, which achieves timely performance feedback via trial decomposition and scheduling optimization. 12 authors · Mar 12, 2024
- Harmony: Overcoming the Hurdles of GPU Memory Capacity to Train Massive DNN Models on Commodity Servers Deep neural networks (DNNs) have grown exponentially in size over the past decade, leaving only those who have massive datacenter-based resources with the ability to develop and train such models. One of the main challenges for the long tail of researchers who might have only limited resources (e.g., a single multi-GPU server) is limited GPU memory capacity compared to model size. The problem is so acute that the memory requirement of training massive DNN models can often exceed the aggregate capacity of all available GPUs on a single server; this problem only gets worse with the trend of ever-growing model sizes. Current solutions that rely on virtualizing GPU memory (by swapping to/from CPU memory) incur excessive swapping overhead. In this paper, we present a new training framework, Harmony, and advocate rethinking how DNN frameworks schedule computation and move data to push the boundaries of training massive models efficiently on a single commodity server. Across various massive DNN models, Harmony is able to reduce swap load by up to two orders of magnitude and obtain a training throughput speedup of up to 7.6x over highly optimized baselines with virtualized memory. 5 authors · Feb 2, 2022
1 Parallax: Efficient LLM Inference Service over Decentralized Environment Deploying a large language model (LLM) inference service remains costly because centralized serving depends on specialized GPU clusters and high-bandwidth interconnects in datacenters. An appealing alternative is to leverage collaborative decentralized GPU pools. However, heterogeneity in GPU and limited interconnected network bandwidth, along with potentially dynamic availability, make efficient scheduling the central challenge in this scenario. In this paper, we present Parallax, a decentralized LLM serving system that turns a pool of heterogeneous GPUs into an efficient inference platform via a two-phase scheduler. Parallax decomposes planning into (i) model allocation, which places layers of each replica across diverse GPUs to jointly optimize latency and throughput under memory and link-bandwidth constraints, and (ii) request-time GPU pipeline selection, which stitches layers from different replicas into end-to-end execution chains that balance load and adapt to current conditions. We implement Parallax and evaluate it on open-source LLMs deployed over real volunteer nodes. Parallax consistently reduces latency and increases throughput relative to decentralized baselines, demonstrating that principled scheduling can make volunteer compute a practical, affordable substrate for LLM inference. Github Repo at: https://github.com/GradientHQ/parallax. 9 authors · Sep 30, 2025