new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Galaxy Spectra neural Networks (GaSNets). I. Searching for strong lens candidates in eBOSS spectra using Deep Learning

With the advent of new spectroscopic surveys from ground and space, observing up to hundreds of millions of galaxies, spectra classification will become overwhelming for standard analysis techniques. To prepare for this challenge, we introduce a family of deep learning tools to classify features in one-dimensional spectra. As the first application of these Galaxy Spectra neural Networks (GaSNets), we focus on tools specialized at identifying emission lines from strongly lensed star-forming galaxies in the eBOSS spectra. We first discuss the training and testing of these networks and define a threshold probability, PL, of 95% for the high quality event detection. Then, using a previous set of spectroscopically selected strong lenses from eBOSS, confirmed with HST, we estimate a completeness of ~80% as the fraction of lenses recovered above the adopted PL. We finally apply the GaSNets to ~1.3M spectra to collect a first list of ~430 new high quality candidates identified with deep learning applied to spectroscopy and visually graded as highly probable real events. A preliminary check against ground-based observations tentatively shows that this sample has a confirmation rate of 38%, in line with previous samples selected with standard (no deep learning) classification tools and follow-up by Hubble Space Telescope. This first test shows that machine learning can be efficiently extended to feature recognition in the wavelength space, which will be crucial for future surveys like 4MOST, DESI, Euclid, and the Chinese Space Station Telescope (CSST).

  • 3 authors
·
Feb 16, 2022

Cluster-lensed supernova yields from the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope

Through gravitational lensing, galaxy clusters can magnify supernovae (SNe) and create multiple images of the same SN. This enables measurements of cosmological parameters, which will be increasingly important in light of upcoming telescopic surveys. We study the prospects of detecting strongly lensed SNe in cluster fields with the Nancy Grace Roman Space Telescope (Roman)'s High Latitude Time Domain Survey (HLTDS) and the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST). We employed two approaches: one focusing on known multiply imaged galaxies behind clusters, along with the SN rates specific to those galaxies, and another based on the expected number of lensed SNe exploding in a given volume behind a galaxy cluster. We collected all the clusters in the literature that feature a well-constrained lens model and multiply imaged galaxies behind clusters with high-quality data for the lensed galaxies. This allowed us to determine the SN rate for each galaxy. We provide predictions for 46 clusters visible to the Vera C. Rubin Observatory, as well as for 9 observable by Roman's HLTDS, depending on whether the clusters fall within the survey's observing field. We predict that the number of multiply imaged SNe discovered by LSST in its first three years is 3.95 pm 0.89 from the first approach or 4.94 pm 1.02 from the second. For the HLTDS, the expected number of multiply imaged SNe ranges from 0.38 pm 0.15 to 5.2 pm 2.2, depending on the specific cluster observed, however, the fields to be targeted remain a matter of discussion. We conclude that LSST offers great prospects for detecting multiply imaged SNe. Our predictions are effectively lower limits, as we only considered the most massive and well-studied clusters. We provide a recommendation for HLTDS observing field selection, namely: either MACS J0553.4-3342 or Abell 1758a should be observed by the survey.

  • 8 authors
·
Apr 1, 2025