10 Audio Flamingo 3: Advancing Audio Intelligence with Fully Open Large Audio Language Models We present Audio Flamingo 3 (AF3), a fully open state-of-the-art (SOTA) large audio-language model that advances reasoning and understanding across speech, sound, and music. AF3 introduces: (i) AF-Whisper, a unified audio encoder trained using a novel strategy for joint representation learning across all 3 modalities of speech, sound, and music; (ii) flexible, on-demand thinking, allowing the model to do chain-of-thought-type reasoning before answering; (iii) multi-turn, multi-audio chat; (iv) long audio understanding and reasoning (including speech) up to 10 minutes; and (v) voice-to-voice interaction. To enable these capabilities, we propose several large-scale training datasets curated using novel strategies, including AudioSkills-XL, LongAudio-XL, AF-Think, and AF-Chat, and train AF3 with a novel five-stage curriculum-based training strategy. Trained on only open-source audio data, AF3 achieves new SOTA results on over 20+ (long) audio understanding and reasoning benchmarks, surpassing both open-weight and closed-source models trained on much larger datasets. 11 authors · Jul 10 3
10 Music Flamingo: Scaling Music Understanding in Audio Language Models We introduce Music Flamingo, a novel large audio-language model designed to advance music (including song) understanding in foundational audio models. While audio-language research has progressed rapidly, music remains challenging due to its dynamic, layered, and information-dense nature. Progress has been further limited by the difficulty of scaling open audio understanding models, primarily because of the scarcity of high-quality music data and annotations. As a result, prior models are restricted to producing short, high-level captions, answering only surface-level questions, and showing limited generalization across diverse musical cultures. To address these challenges, we curate MF-Skills, a large-scale dataset labeled through a multi-stage pipeline that yields rich captions and question-answer pairs covering harmony, structure, timbre, lyrics, and cultural context. We fine-tune an enhanced Audio Flamingo 3 backbone on MF-Skills and further strengthen multiple skills relevant to music understanding. To improve the model's reasoning abilities, we introduce a post-training recipe: we first cold-start with MF-Think, a novel chain-of-thought dataset grounded in music theory, followed by GRPO-based reinforcement learning with custom rewards. Music Flamingo achieves state-of-the-art results across 10+ benchmarks for music understanding and reasoning, establishing itself as a generalist and musically intelligent audio-language model. Beyond strong empirical results, Music Flamingo sets a new standard for advanced music understanding by demonstrating how models can move from surface-level recognition toward layered, human-like perception of songs. We believe this work provides both a benchmark and a foundation for the community to build the next generation of models that engage with music as meaningfully as humans do. NVIDIA · Nov 13 2
7 MMAU-Pro: A Challenging and Comprehensive Benchmark for Holistic Evaluation of Audio General Intelligence Audio comprehension-including speech, non-speech sounds, and music-is essential for achieving human-level intelligence. Consequently, AI agents must demonstrate holistic audio understanding to qualify as generally intelligent. However, evaluating auditory intelligence comprehensively remains challenging. To address this gap, we introduce MMAU-Pro, the most comprehensive and rigorously curated benchmark for assessing audio intelligence in AI systems. MMAU-Pro contains 5,305 instances, where each instance has one or more audios paired with human expert-generated question-answer pairs, spanning speech, sound, music, and their combinations. Unlike existing benchmarks, MMAU-Pro evaluates auditory intelligence across 49 unique skills and multiple complex dimensions, including long-form audio comprehension, spatial audio reasoning, multi-audio understanding, among others. All questions are meticulously designed to require deliberate multi-hop reasoning, including both multiple-choice and open-ended response formats. Importantly, audio data is sourced directly ``from the wild" rather than from existing datasets with known distributions. We evaluate 22 leading open-source and proprietary multimodal AI models, revealing significant limitations: even state-of-the-art models such as Gemini 2.5 Flash and Audio Flamingo 3 achieve only 59.2% and 51.7% accuracy, respectively, approaching random performance in multiple categories. Our extensive analysis highlights specific shortcomings and provides novel insights, offering actionable perspectives for the community to enhance future AI systems' progression toward audio general intelligence. The benchmark and code is available at https://sonalkum.github.io/mmau-pro. 34 authors · Aug 19 2
26 Audio Flamingo 2: An Audio-Language Model with Long-Audio Understanding and Expert Reasoning Abilities Understanding and reasoning over non-speech sounds and music are crucial for both humans and AI agents to interact effectively with their environments. In this paper, we introduce Audio Flamingo 2 (AF2), an Audio-Language Model (ALM) with advanced audio understanding and reasoning capabilities. AF2 leverages (i) a custom CLAP model, (ii) synthetic Audio QA data for fine-grained audio reasoning, and (iii) a multi-stage curriculum learning strategy. AF2 achieves state-of-the-art performance with only a 3B parameter small language model, surpassing large open-source and proprietary models across over 20 benchmarks. Next, for the first time, we extend audio understanding to long audio segments (30 secs to 5 mins) and propose LongAudio, a large and novel dataset for training ALMs on long audio captioning and question-answering tasks. Fine-tuning AF2 on LongAudio leads to exceptional performance on our proposed LongAudioBench, an expert annotated benchmark for evaluating ALMs on long audio understanding capabilities. We conduct extensive ablation studies to confirm the efficacy of our approach. Project Website: https://research.nvidia.com/labs/adlr/AF2/. 9 authors · Mar 5 2
16 Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities Augmenting large language models (LLMs) to understand audio -- including non-speech sounds and non-verbal speech -- is critically important for diverse real-world applications of LLMs. In this paper, we propose Audio Flamingo, a novel audio language model with 1) strong audio understanding abilities, 2) the ability to quickly adapt to unseen tasks via in-context learning and retrieval, and 3) strong multi-turn dialogue abilities. We introduce a series of training techniques, architecture design, and data strategies to enhance our model with these abilities. Extensive evaluations across various audio understanding tasks confirm the efficacy of our method, setting new state-of-the-art benchmarks. 6 authors · Feb 2, 2024 5
- ChatGPT is not all you need. A State of the Art Review of large Generative AI models During the last two years there has been a plethora of large generative models such as ChatGPT or Stable Diffusion that have been published. Concretely, these models are able to perform tasks such as being a general question and answering system or automatically creating artistic images that are revolutionizing several sectors. Consequently, the implications that these generative models have in the industry and society are enormous, as several job positions may be transformed. For example, Generative AI is capable of transforming effectively and creatively texts to images, like the DALLE-2 model; text to 3D images, like the Dreamfusion model; images to text, like the Flamingo model; texts to video, like the Phenaki model; texts to audio, like the AudioLM model; texts to other texts, like ChatGPT; texts to code, like the Codex model; texts to scientific texts, like the Galactica model or even create algorithms like AlphaTensor. This work consists on an attempt to describe in a concise way the main models are sectors that are affected by generative AI and to provide a taxonomy of the main generative models published recently. 2 authors · Jan 11, 2023
- mWhisper-Flamingo for Multilingual Audio-Visual Noise-Robust Speech Recognition Audio-Visual Speech Recognition (AVSR) combines lip-based video with audio and can improve performance in noise, but most methods are trained only on English data. One limitation is the lack of large-scale multilingual video data, which makes it hard hard to train models from scratch. In this work, we propose mWhisper-Flamingo for multilingual AVSR which combines the strengths of a pre-trained audio model (Whisper) and video model (AV-HuBERT). To enable better multi-modal integration and improve the noisy multilingual performance, we introduce decoder modality dropout where the model is trained both on paired audio-visual inputs and separate audio/visual inputs. mWhisper-Flamingo achieves state-of-the-art WER on MuAViC, an AVSR dataset of 9 languages. Audio-visual mWhisper-Flamingo consistently outperforms audio-only Whisper on all languages in noisy conditions. 5 authors · Feb 3
1 Whisper-Flamingo: Integrating Visual Features into Whisper for Audio-Visual Speech Recognition and Translation Audio-Visual Speech Recognition (AVSR) uses lip-based video to improve performance in noise. Since videos are harder to obtain than audio, the video training data of AVSR models is usually limited to a few thousand hours. In contrast, speech models such as Whisper are trained with hundreds of thousands of hours of data, and thus learn a better speech-to-text decoder. The huge training data difference motivates us to adapt Whisper to handle video inputs. Inspired by Flamingo which injects visual features into language models, we propose Whisper-Flamingo which integrates visual features into the Whisper speech recognition and translation model with gated cross attention. Our audio-visual Whisper-Flamingo outperforms audio-only Whisper on English speech recognition and En-X translation for 6 languages in noisy conditions. Moreover, Whisper-Flamingo is a versatile model and conducts all of these tasks using one set of parameters, while prior methods are trained separately on each language. 7 authors · Jun 14, 2024
- Audio Flamingo Sound-CoT Technical Report: Improving Chain-of-Thought Reasoning in Sound Understanding Chain-of-thought reasoning has demonstrated significant improvements in large language models and vision language models, yet its potential for audio language models remains largely unexplored. In this technical report, we take a preliminary step towards closing this gap. For better assessment of sound reasoning, we propose AF-Reasoning-Eval, a benchmark targeting common-sense reasoning and the ability to discriminate among closely related choices. To prepare training corpus for sound reasoning abilities, we propose automatic pipelines that transform existing audio question answering and classification data into explicit reasoning chains, yielding AF-CoT-Train with 1.24M samples. We study the effect of finetuning Audio Flamingo series on AF-CoT-Train and observe considerable improvements on several reasoning benchmarks, validating the effectiveness of chain-of-thought finetuning on advanced sound understanding. 7 authors · Aug 15