A Wearable Device Dataset for Mental Health Assessment Using Laser Doppler Flowmetry and Fluorescence Spectroscopy Sensors
Abstract
A wearable device using LDF and FS sensors collects physiological data from 132 volunteers across 19 countries to predict mental health conditions, with LightGBM achieving 0.7168 ROC AUC for stress detection and XAI techniques providing model interpretability.
In this study, we introduce a novel method to predict mental health by building machine learning models for a non-invasive wearable device equipped with Laser Doppler Flowmetry (LDF) and Fluorescence Spectroscopy (FS) sensors. Besides, we present the corresponding dataset to predict mental health, e.g. depression, anxiety, and stress levels via the DAS-21 questionnaire. To our best knowledge, this is the world's largest and the most generalized dataset ever collected for both LDF and FS studies. The device captures cutaneous blood microcirculation parameters, and wavelet analysis of the LDF signal extracts key rhythmic oscillations. The dataset, collected from 132 volunteers aged 18-94 from 19 countries, explores relationships between physiological features, demographics, lifestyle habits, and health conditions. We employed a variety of machine learning methods to classify stress detection, in which LightGBM is identified as the most effective model for stress detection, achieving a ROC AUC of 0.7168 and a PR AUC of 0.8852. In addition, we also incorporated Explainable Artificial Intelligence (XAI) techniques into our analysis to investigate deeper insights into the model's predictions. Our results suggest that females, younger individuals and those with a higher Body Mass Index (BMI) or heart rate have a greater likelihood of experiencing mental health conditions like stress and anxiety. All related code and data are published online: https://github.com/leduckhai/Wearable_LDF-FS.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper