File size: 5,507 Bytes
d180e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e0e87
 
 
 
 
 
 
26ee7e2
30e0e87
d180e62
2aefa2a
d180e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dfa285
 
d180e62
 
 
6dfa285
 
d180e62
 
 
 
 
26577be
d180e62
 
 
26ee7e2
 
d180e62
71a00b8
 
 
 
d180e62
 
 
b5600fe
d180e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
base_model:
- meta-llama/Llama-3.3-70B-Instruct
---
# Model Overview

## Description:
The NVIDIA Llama 3.3 70B Instruct FP8 model is the quantized version of the Meta's Llama 3.3 70B Instruct model, which is an auto-regressive language model that uses an optimized transformer architecture. For more information, please check [here](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct). The NVIDIA Llama 3.3 70B Instruct FP8 model is quantized with [TensorRT Model Optimizer](https://github.com/NVIDIA/TensorRT-Model-Optimizer).

This model is ready for commercial/non-commercial use.  <br>

## Third-Party Community Consideration
This model is not owned or developed by NVIDIA. This model has been developed and built to a third-party’s requirements for this application and use case; see link to Non-NVIDIA [(Meta-Llama-3.3-70B-Instruct) Model Card](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct).

### License/Terms of Use:
[nvidia-open-model-license](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/)

[llama3.3](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct/blob/main/LICENSE)

### Deployment Geography:
Global <br>

### Use Case: <br>
Developers looking to take off the shelf pre-quantized models for deployment <br>

### Release Date:  <br>
Huggingface 05/09/2025 via https://huggingface.co/nvidia/Llama-3.3-70B-Instruct-FP8 <br>

## Model Architecture:
**Architecture Type:** Transformer  <br>
**Network Architecture:** Llama3.3 <br>

## Input:
**Input Type(s):** Text <br>
**Input Format(s):** String <br>
**Input Parameters:** 1D (One Dimensional): Sequences <br>
**Other Properties Related to Input:** Context length up to 128K <br>

## Output:
**Output Type(s):** Text <br>
**Output Format:** String <br>
**Output Parameters:** 1D (One Dimensional): Sequences <br>
**Other Properties Related to Output:** N/A <br>

## Software Integration:
**Supported Runtime Engine(s):** <br>
* Tensor(RT)-LLM <br>
* SGLang <br>
* vLLM <br>

**Supported Hardware Microarchitecture Compatibility:** <br>
* NVIDIA Blackwell <br>
* NVIDIA Hopper <br>
* NVIDIA Lovelace <br>

**Preferred Operating System(s):** <br>
* Linux <br>

## Model Version(s):
The model is quantized with nvidia-modelopt **v0.27.1**  <br>

## Datasets:
* Calibration Dataset: [cnn_dailymail](https://huggingface.co/datasets/abisee/cnn_dailymail) <br>
** Data collection method: The dataset is collected by crawling and extracting news articles and their summaries from the CNN and Daily Mail websites. <br>
** Labeling method: The dataset is labeled by having the news articles as input and the corresponding highlight as the gold label summary. <br>

* Evaluation Dataset: MMLU, GSM8K_COT, ARC Challenge, IFEVAL <br>
** Data collection method: The data is gathered from various sources. <br>
** Labeling method: The data is labeled by human input and/or algorithmic methods. <br>


## Inference:
**Engine:** Tensor(RT)-LLM <br>
**Test Hardware:** H100 <br>

## Post Training Quantization
This model was obtained by quantizing the weights and activations of Meta-Llama-3.3-70B-Instruct to FP8 data type, ready for inference with TensorRT-LLM. Only the weights and activations of the linear operators within transformers blocks are quantized. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.

## Usage

### Deploy with TensorRT-LLM

To deploy the quantized checkpoint with [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) LLM API, follow the sample codes below:

* LLM API sample usage:
```
from tensorrt_llm import LLM, SamplingParams


def main():

    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]
    sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

    llm = LLM(model="nvidia/Llama-3.3-70B-Instruct-FP8")

    outputs = llm.generate(prompts, sampling_params)

    # Print the outputs.
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")


# The entry point of the program need to be protected for spawning processes.
if __name__ == '__main__':
    main()

```


#### Evaluation
The accuracy benchmark results are presented in the table below:
<table>
  <tr>
   <td><strong>Precision</strong>
   </td>
   <td><strong>MMLU</strong>
   </td>
   <td><strong>GSM8K_COT</strong>
   </td>
   <td><strong>ARC Challenge</strong>
   </td>
   <td><strong>IFEVAL</strong>
   </td>
  </tr>
  <tr>
   <td>BF16
   </td>
   <td>83.3
   </td>
   <td>95.3
   </td>
   <td>93.7
   </td>
   <td>92.1
   </td>
  </tr>
  <tr>
   <td>FP8
   </td>
   <td>83.2
   </td>
   <td>94.3
   </td>
   <td>93.2
   </td>
   <td>92.2
   </td>
  </tr>
  <tr>
</table>


## Ethical Considerations

NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.

Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).