Update README.md
Browse files
README.md
CHANGED
|
@@ -10,3 +10,38 @@ widget:
|
|
| 10 |
---
|
| 11 |
|
| 12 |
# German BERT2BERT fine-tuned on MLSUM DE for summarization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
# German BERT2BERT fine-tuned on MLSUM DE for summarization
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
## Model
|
| 16 |
+
[bert-base-german-cased](https://huggingface.co/bert-base-german-cased) (BERT Checkpoint)
|
| 17 |
+
## Dataset
|
| 18 |
+
**MLSUM** is the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, **German**, Spanish, Russian, Turkish. Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset.
|
| 19 |
+
[MLSUM de](https://huggingface.co/datasets/viewer/?dataset=mlsum)
|
| 20 |
+
## Results
|
| 21 |
+
|Set|Metric| # Score|
|
| 22 |
+
|----|------|------|
|
| 23 |
+
| Test |Rouge2 - mid -precision | ****|
|
| 24 |
+
| Test | Rouge2 - mid - recall | ****|
|
| 25 |
+
| Test | Rouge2 - mid - fmeasure | ****|
|
| 26 |
+
## Usage
|
| 27 |
+
```python
|
| 28 |
+
import torch
|
| 29 |
+
from transformers import BertTokenizerFast, EncoderDecoderModel
|
| 30 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 31 |
+
ckpt = 'mrm8488/bert2bert_shared-german-finetuned-summarization'
|
| 32 |
+
tokenizer = BertTokenizerFast.from_pretrained(ckpt)
|
| 33 |
+
model = EncoderDecoderModel.from_pretrained(ckpt).to(device)
|
| 34 |
+
def generate_summary(text):
|
| 35 |
+
inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
|
| 36 |
+
input_ids = inputs.input_ids.to(device)
|
| 37 |
+
attention_mask = inputs.attention_mask.to(device)
|
| 38 |
+
output = model.generate(input_ids, attention_mask=attention_mask)
|
| 39 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 40 |
+
|
| 41 |
+
text = "Your text here..."
|
| 42 |
+
|
| 43 |
+
generate_summary(text)
|
| 44 |
+
|
| 45 |
+
```
|
| 46 |
+
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) with the support of [Narrativa](https://www.narrativa.com/)
|
| 47 |
+
> Made with <span style="color: #e25555;">♥</span> in Spain
|