whisper-base-hi / README.md
mmusawarbaig's picture
End of training
1623df9 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-base.en
tags:
  - generated_from_trainer
datasets:
  - dailytalk
metrics:
  - wer
model-index:
  - name: whisper-base.en-mmb
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: dailytalk
          type: dailytalk
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 10.43014661335272

whisper-base.en-mmb

This model is a fine-tuned version of openai/whisper-base.en on the dailytalk dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1725
  • Wer: 10.4301

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1555 0.93 1000 0.1675 10.6676
0.1267 1.87 2000 0.1613 10.3356
0.0876 2.8 3000 0.1662 10.4398
0.0544 3.74 4000 0.1725 10.4301

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.15.2