NeuroBLAST-V3-SYNTH-EC-150000 / modeling_neuroblast.py
mkurman's picture
Upload 9 files
25597f5 verified
# coding=utf-8
# Copyright 2025 Mariusz Kurman, MedIT Solutions Sp. z o.o, Poland. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch NeuroBLAST model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers import GenerationMixin
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_neuroblast import NeuroBLASTConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "NeuroBLASTConfig"
class NeuroBLASTRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class NeuroBLASTMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed.to(q.dtype), k_embed.to(q.dtype)
class NeuroBLASTAttention(nn.Module):
def __init__(self, config: NeuroBLASTConfig, layer_idx: Optional[int] = None, use_rope: bool = True):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.use_rope = use_rope
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.q_norm = NeuroBLASTRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = NeuroBLASTRMSNorm(self.head_dim, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
# Norm
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The `layer_idx` should be defined when calling the forward function of {self.__class__.__name__}. "
"Please make sure to pass a `layer_idx` when creating this class."
)
kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
if self.use_rope and position_embeddings is not None:
cos, sin = position_embeddings
cos = cos.squeeze(2)
sin = sin.squeeze(2)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=1)
else:
cos = None
sin = None
if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs={"cos": cos, "sin": sin})
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.config.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class NeuroBLASTRMSNorm2d(nn.Module):
def __init__(self, dim, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.variance_epsilon = eps
def forward(self, x):
# x: (B, C, H, W)
input_dtype = x.dtype
x = x.to(torch.float32)
variance = x.pow(2).mean(dim=1, keepdim=True)
x_norm = x * torch.rsqrt(variance + self.variance_epsilon)
return self.weight.view(1, -1, 1, 1) * x_norm.to(input_dtype)
class NeuroBLASTCausalConv2DBlock(nn.Module):
def __init__(self, config, dilation=1, layer_idx=0):
super().__init__()
self.config = config
self.dilation = dilation
self.layer_idx = layer_idx
k = config.kernel_size
d = config.hidden_size
s = config.scale
self.conv_padding = (k // 2, 0)
if s == 1:
self.conv = nn.Conv2d(
d, d,
kernel_size=(k, k),
dilation=(1, dilation),
padding=self.conv_padding,
bias=False
)
self.use_gating = False
self.use_projection = False
elif s > 1:
internal_dim = int(d * s)
self.conv = nn.Conv2d(
d, internal_dim,
kernel_size=(k, k),
dilation=(1, dilation),
padding=self.conv_padding,
bias=False
)
self.use_gating = True
self.use_projection = False
else:
internal_dim = max(int(d * s), d // 4)
self.conv = nn.Conv2d(
d, internal_dim,
kernel_size=(k, k),
dilation=(1, dilation),
padding=self.conv_padding,
bias=False
)
self.use_gating = False
self.use_projection = True
self.proj_back = nn.Conv2d(internal_dim, d, kernel_size=(1, 1), bias=False)
self.norm_in = NeuroBLASTRMSNorm2d(d, eps=config.rms_norm_eps)
self.norm_out = NeuroBLASTRMSNorm2d(d, eps=config.rms_norm_eps)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
# x: (B, C, H, W)
B, C, H, W = x.shape
residual = x
y = self.norm_in(x)
k = self.config.kernel_size
pad_w = (k - 1) * self.dilation
# Pad W on the left
y_pad = F.pad(y, (pad_w, 0, 0, 0))
y = self.conv(y_pad)
if self.use_gating:
gate, val = torch.chunk(y, 2, dim=1)
y = val * F.softmax(gate, dim=1)
elif self.use_projection:
y = self.proj_back(y)
y = self.norm_out(y)
x = residual + self.dropout(y)
return x
class NeuroBLASTDecoderLayer(nn.Module):
def __init__(self, config: NeuroBLASTConfig, layer_idx: int, attention_type: str = "full_attention"):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = NeuroBLASTAttention(
config=config,
layer_idx=layer_idx,
use_rope=(attention_type != "no_rope"),
)
self.mlp = NeuroBLASTMLP(config)
self.input_layernorm = NeuroBLASTRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = NeuroBLASTRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
position_embeddings=position_embeddings,
)
hidden_states = residual + hidden_states
# MLP
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class NeuroBLASTToken2D(nn.Module):
def forward(self, x, mode="seq_to_2d"):
if mode == "seq_to_2d":
return x.permute(0, 2, 1).unsqueeze(2)
else:
return x.squeeze(2).permute(0, 2, 1)
class NeuroBLASTRotaryEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.dim = config.head_dim
self.max_position_embeddings = config.max_position_embeddings
self.base = config.rope_theta
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, x, position_ids):
# x: (B, L, H, D) or similar. Not used for shape here.
# position_ids: (B, L)
inv_freq_expanded = self.inv_freq[None, :, None]
position_ids_expanded = position_ids[:, :, None].float()
freqs = torch.matmul(position_ids_expanded, self.inv_freq[None, None, :])
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Output: (B, L, 1, D)
return cos[:, :, None, :], sin[:, :, None, :]
class NeuroBLASTPreTrainedModel(PreTrainedModel):
config_class = NeuroBLASTConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["NeuroBLASTDecoderLayer", "NeuroBLASTCausalConv2DBlock"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class NeuroBLASTModel(NeuroBLASTPreTrainedModel):
def __init__(self, config: NeuroBLASTConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.token2d = NeuroBLASTToken2D()
self.sensory_layers = nn.ModuleList()
dilatation_step = 1
for i in range(config.num_sensory_layers):
if i % 2 == 0:
layer = NeuroBLASTDecoderLayer(config, layer_idx=i, attention_type="full_attention")
else:
dilation = min(2 ** ((i - 1) // dilatation_step), 8)
layer = NeuroBLASTCausalConv2DBlock(config, dilation=dilation, layer_idx=i)
self.sensory_layers.append(layer)
self.sensory_to_associative = NeuroBLASTRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.associative_layers = nn.ModuleList()
next_layer_type = "full_attention"
for i in range(config.num_associative_layers):
idx = i + config.num_sensory_layers
if i % 2 == 0:
layer = NeuroBLASTDecoderLayer(config, layer_idx=idx, attention_type=next_layer_type)
if next_layer_type == "full_attention":
next_layer_type = "no_rope"
else:
next_layer_type = "full_attention"
else:
dilation = min(2 ** ((i - 1) // dilatation_step), 8)
layer = NeuroBLASTCausalConv2DBlock(config, dilation=dilation, layer_idx=idx)
self.associative_layers.append(layer)
self.sensory_to_motor = NeuroBLASTRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.motor_layers = nn.ModuleList()
next_layer_type = "full_attention"
for i in range(config.num_motor_layers):
idx = i + config.num_sensory_layers + config.num_associative_layers
layer = NeuroBLASTDecoderLayer(config, layer_idx=idx, attention_type=next_layer_type)
if next_layer_type == "full_attention":
next_layer_type = "no_rope"
else:
next_layer_type = "full_attention"
self.motor_layers.append(layer)
self.norm = NeuroBLASTRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = NeuroBLASTRotaryEmbedding(config)
self.gradient_checkpointing = False
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, DynamicCache):
past_length = past_key_values.get_seq_length()
elif isinstance(past_key_values, (tuple, list)):
past_length = past_key_values[0][0].shape[-2]
position_ids = torch.arange(past_length, past_length + seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length), dtype=torch.bool, device=inputs_embeds.device
)
# Create causal mask
min_dtype = torch.finfo(inputs_embeds.dtype).min
causal_mask = torch.full((seq_length, seq_length), min_dtype, device=inputs_embeds.device)
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask = causal_mask[None, None, :, :] # (1, 1, L, L)
# Expand attention_mask
# attention_mask: (B, L) -> (B, 1, 1, L)
padding_mask = attention_mask[:, None, None, :].to(inputs_embeds.dtype)
padding_mask = (1.0 - padding_mask) * min_dtype
combined_mask = causal_mask + padding_mask
# Initialize cache if needed
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
hidden_states = inputs_embeds
# RoPE
position_embeddings = self.rotary_emb(hidden_states, position_ids)
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
residual = hidden_states
# Sensory
for i, layer in enumerate(self.sensory_layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if i % 2 == 1:
# Conv layer
hidden_states = self.token2d(hidden_states, mode="seq_to_2d")
hidden_states = layer(hidden_states)
hidden_states = self.token2d(hidden_states, mode="d2_to_seq")
else:
# Attention layer
layer_outputs = layer(
hidden_states,
attention_mask=combined_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = hidden_states + self.sensory_to_associative(F.silu(residual))
# Associative
for i, layer in enumerate(self.associative_layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if i % 2 == 1:
hidden_states = self.token2d(hidden_states, mode="seq_to_2d")
hidden_states = layer(hidden_states)
hidden_states = self.token2d(hidden_states, mode="d2_to_seq")
else:
layer_outputs = layer(
hidden_states,
attention_mask=combined_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = hidden_states + self.sensory_to_motor(F.silu(-residual))
# Motor
for i, layer in enumerate(self.motor_layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask=combined_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class NeuroBLASTPreTrainedModel(PreTrainedModel):
config_class = NeuroBLASTConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["NeuroBLASTBlock"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class NeuroBLASTForCausalLM(NeuroBLASTPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = NeuroBLASTModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
return_dict=return_dict,
)
hidden_states = outputs[0]
slice_indices = (
slice(-logits_to_keep, None)
if isinstance(logits_to_keep, int)
else logits_to_keep
)
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits,
labels=labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)