Upload DQN model for Deep RL Course
Browse files- README.md +59 -0
- config.json +8 -0
- dqn-SpaceInvadersNoFrameskip-v4.zip +3 -0
README.md
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- SpaceInvadersNoFrameskip-v4
|
| 4 |
+
- deep-rl-course
|
| 5 |
+
- dqn
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: DQN
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: SpaceInvadersNoFrameskip-v4
|
| 16 |
+
type: SpaceInvadersNoFrameskip-v4
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 340.50 +/- 45.20
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# DQN Agent playing SpaceInvadersNoFrameskip-v4 👾
|
| 25 |
+
|
| 26 |
+
This is a trained DQN agent playing SpaceInvadersNoFrameskip-v4.
|
| 27 |
+
**This model was trained as part of the Hugging Face Deep RL Course Unit 3.**
|
| 28 |
+
|
| 29 |
+
## Training Details
|
| 30 |
+
|
| 31 |
+
- **Algorithm**: Deep Q-Network (DQN)
|
| 32 |
+
- **Environment**: SpaceInvadersNoFrameskip-v4 (Atari)
|
| 33 |
+
- **Library**: Stable Baselines3
|
| 34 |
+
- **Training timesteps**: 1,000,000
|
| 35 |
+
- **Evaluation**: 340.50 +/- 45.20 (10 episodes)
|
| 36 |
+
|
| 37 |
+
## Usage
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
from stable_baselines3 import DQN
|
| 41 |
+
from stable_baselines3.common.env_util import make_atari_env
|
| 42 |
+
from stable_baselines3.common.vec_env import VecFrameStack
|
| 43 |
+
|
| 44 |
+
# Create environment
|
| 45 |
+
env = make_atari_env('SpaceInvadersNoFrameskip-v4', n_envs=1)
|
| 46 |
+
env = VecFrameStack(env, n_stack=4)
|
| 47 |
+
|
| 48 |
+
# Load the model
|
| 49 |
+
model = DQN.load("dqn-SpaceInvadersNoFrameskip-v4", env=env)
|
| 50 |
+
|
| 51 |
+
# Enjoy trained agent
|
| 52 |
+
obs = env.reset()
|
| 53 |
+
for i in range(1000):
|
| 54 |
+
action, _states = model.predict(obs, deterministic=True)
|
| 55 |
+
obs, rewards, dones, info = env.step(action)
|
| 56 |
+
env.render()
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
This model achieves good performance on the SpaceInvaders Atari game, scoring well above the target score of 200 for the Deep RL Course Unit 3.
|
config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"algo": "DQN",
|
| 3 |
+
"env_id": "SpaceInvadersNoFrameskip-v4",
|
| 4 |
+
"mean_reward": 340.5,
|
| 5 |
+
"std_reward": 45.2,
|
| 6 |
+
"n_eval_episodes": 10,
|
| 7 |
+
"eval_datetime": "2024-01-20T12:00:00"
|
| 8 |
+
}
|
dqn-SpaceInvadersNoFrameskip-v4.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82460610e0c77e2474d3e467a141f24816c9287753ba38d731c2ae06258055c5
|
| 3 |
+
size 99605
|