|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from einops import rearrange, repeat |
|
|
|
|
|
|
|
|
class BLCModuleCompatibleBCHW(nn.Module): |
|
|
def forward_blc(self, x): |
|
|
raise NotImplementedError() |
|
|
|
|
|
def forward(self, x): |
|
|
is2d = x.ndim == 4 |
|
|
if is2d: |
|
|
_, _, H, W = x.shape |
|
|
x = rearrange(x, "B C H W -> B (H W) C") |
|
|
|
|
|
x = self.forward_blc(x) |
|
|
|
|
|
if is2d: |
|
|
x = rearrange(x, "B (H W) C -> B C H W", H=H, W=W) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class FeatureEncoder(nn.Module): |
|
|
"""Encoder + Feature extractor |
|
|
""" |
|
|
def __init__(self, safe=True): |
|
|
super().__init__() |
|
|
self.safe = safe |
|
|
self._features = [] |
|
|
|
|
|
def hook(self, module, input, output): |
|
|
self._features.append(output) |
|
|
|
|
|
def clear_features(self): |
|
|
self._features.clear() |
|
|
|
|
|
def _encode(self, x): |
|
|
raise NotImplementedError() |
|
|
|
|
|
def forward(self, *args, ret_feats=False, **kwargs): |
|
|
self.clear_features() |
|
|
|
|
|
x = self._encode(*args, **kwargs) |
|
|
|
|
|
if ret_feats: |
|
|
if self.safe: |
|
|
features = [t.clone() for t in self._features] |
|
|
self.clear_features() |
|
|
else: |
|
|
features = self._features |
|
|
return x, features |
|
|
else: |
|
|
self.clear_features() |
|
|
return x |
|
|
|
|
|
|
|
|
class Project2d(nn.Module): |
|
|
"""2d projection by 1x1 conv |
|
|
|
|
|
Args: |
|
|
p: [C_in, C_out] |
|
|
""" |
|
|
def __init__(self, p): |
|
|
|
|
|
super().__init__() |
|
|
p = rearrange(p, "Cin Cout -> Cout Cin 1 1") |
|
|
self.p = nn.Parameter(p.detach().clone()) |
|
|
|
|
|
def forward(self, x): |
|
|
return F.conv2d(x, self.p) |
|
|
|
|
|
|
|
|
def dispatcher(dispatch_fn): |
|
|
def decorated(key, *args): |
|
|
if callable(key): |
|
|
return key |
|
|
|
|
|
if key is None: |
|
|
key = "none" |
|
|
|
|
|
return dispatch_fn(key, *args) |
|
|
|
|
|
return decorated |
|
|
|
|
|
|
|
|
@dispatcher |
|
|
def activ_dispatch(activ): |
|
|
return { |
|
|
"none": nn.Identity, |
|
|
"relu": nn.ReLU, |
|
|
"lrelu": partial(nn.LeakyReLU, negative_slope=0.2), |
|
|
"gelu": nn.GELU, |
|
|
}[activ.lower()] |
|
|
|
|
|
|
|
|
def get_norm_fn(norm, C): |
|
|
"""2d normalization layers |
|
|
""" |
|
|
if norm is None or norm == "none": |
|
|
return nn.Identity() |
|
|
|
|
|
return { |
|
|
"bn": nn.BatchNorm2d(C), |
|
|
"syncbn": nn.SyncBatchNorm(C), |
|
|
"ln": LayerNorm2d(C), |
|
|
"gn": nn.GroupNorm(32, C), |
|
|
}[norm] |
|
|
|
|
|
|
|
|
class LayerNorm2d(nn.LayerNorm): |
|
|
def __init__(self, num_channels, eps=1e-5, affine=True): |
|
|
super().__init__(num_channels, eps=eps, elementwise_affine=affine) |
|
|
|
|
|
def forward(self, x): |
|
|
return F.layer_norm( |
|
|
x.permute(0, 2, 3, 1), |
|
|
self.normalized_shape, |
|
|
self.weight, |
|
|
self.bias, |
|
|
self.eps |
|
|
).permute(0, 3, 1, 2) |
|
|
|
|
|
|
|
|
class Gate(nn.Module): |
|
|
"""Tanh gate""" |
|
|
def __init__(self, init=0.0): |
|
|
super().__init__() |
|
|
self.gate = nn.Parameter(torch.as_tensor(init)) |
|
|
|
|
|
def forward(self, x): |
|
|
return torch.tanh(self.gate) * x |
|
|
|
|
|
|
|
|
class ConvBlock(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
C_in, |
|
|
C_out, |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1, |
|
|
norm="none", |
|
|
activ="relu", |
|
|
bias=True, |
|
|
upsample=False, |
|
|
downsample=False, |
|
|
pad_type="zeros", |
|
|
dropout=0.0, |
|
|
gate=False, |
|
|
): |
|
|
super().__init__() |
|
|
if kernel_size == 1: |
|
|
assert padding == 0 |
|
|
self.C_in = C_in |
|
|
self.C_out = C_out |
|
|
|
|
|
activ = activ_dispatch(activ) |
|
|
self.upsample = upsample |
|
|
self.downsample = downsample |
|
|
|
|
|
self.norm = get_norm_fn(norm, C_in) |
|
|
self.activ = activ() |
|
|
if dropout > 0.0: |
|
|
self.dropout = nn.Dropout2d(p=dropout) |
|
|
self.conv = nn.Conv2d( |
|
|
C_in, C_out, kernel_size, stride, padding, |
|
|
bias=bias, padding_mode=pad_type |
|
|
) |
|
|
|
|
|
self.gate = Gate() if gate else None |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
x = self.norm(x) |
|
|
x = self.activ(x) |
|
|
if self.upsample: |
|
|
x = F.interpolate(x, scale_factor=2) |
|
|
if hasattr(self, "dropout"): |
|
|
x = self.dropout(x) |
|
|
x = self.conv(x) |
|
|
if self.downsample: |
|
|
x = F.avg_pool2d(x, 2) |
|
|
|
|
|
if self.gate is not None: |
|
|
x = self.gate(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class ResConv(nn.Module): |
|
|
"""Pre-activate residual block with single or double conv block""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
C_in, |
|
|
C_out, |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1, |
|
|
norm="none", |
|
|
activ="relu", |
|
|
upsample=False, |
|
|
pad_type="zeros", |
|
|
dropout=0.0, |
|
|
gate=True, |
|
|
double=False, |
|
|
|
|
|
norm2=None, |
|
|
activ2=None |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.C_in = C_in |
|
|
self.C_out = C_out |
|
|
self.upsample = upsample |
|
|
self.double = double |
|
|
self.conv = ConvBlock( |
|
|
C_in, C_out, kernel_size, stride, padding, norm, activ, |
|
|
pad_type=pad_type, dropout=dropout, gate=gate, |
|
|
) |
|
|
if double: |
|
|
norm2 = norm2 or norm |
|
|
activ2 = activ2 or activ |
|
|
self.conv2 = ConvBlock( |
|
|
C_out, C_out, kernel_size, stride, padding, norm2, activ2, |
|
|
pad_type=pad_type, dropout=dropout, gate=gate |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
if self.upsample: |
|
|
x = F.interpolate(x, scale_factor=2) |
|
|
x = x + self.conv(x) |
|
|
|
|
|
if self.double: |
|
|
x = x + self.conv2(x) |
|
|
|
|
|
return x |
|
|
|