Talk2DINO-ViTB / dinotext.py
lorebianchi98's picture
Fixed error
d120439
raw
history blame
17.9 kB
import itertools
import os
import pickle
from math import sqrt
import re
import yaml
import numpy as np
import timm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from einops import rearrange
from transformers import BertModel, AutoTokenizer
import torchvision.transforms as T
import clip
import importlib
from .us import normalize
from .pamr import PAMR
from .masker import DINOTextMasker
from .templates import get_template
from .model import ProjectionLayer, VisualProjectionLayer, CLIPLastLayer, DoubleMLP
from .hooks import average_text_tokens, get_vit_out, feats
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DINOText(nn.Module):
def get_self_attention(self, module, input, output):
self.feats['self_attn'] = output
def get_clip_second_last_dense_out(self, model: torch.nn.Module, input: torch.Tensor, output: torch.Tensor):
self.feats['clip_second_last_out'] = output
self.feats['clip_second_last_out'].to(dtype=torch.float32)
def get_all_out_tokens(self, model: torch.nn.Module, input: torch.Tensor, output: torch.Tensor):
self.feats['clip_txt_out_tokens'] = output
def __init__(
self, model_name, resize_dim, clip_model_name, proj_class, proj_name, proj_model, avg_self_attn_token=False, disentangled_self_attn_token=True, loss=None, pre_trained=True,
unfreeze_last_text_layer=False, unfreeze_last_image_layer=False, is_eval=True, use_avg_text_token=False, keep_cls=False, keep_end_seq=False, with_bg_clean=False, **kwargs
):
nn.Module.__init__(self)
self.feats = {}
self.model_name = model_name
# loading the model
if 'dinov2' in model_name:
self.model_family = 'facebookresearch/dinov2' if 'dinov2' in model_name else 'facebookresearch/dino:main'
self.model = torch.hub.load(self.model_family, model_name)
elif 'dinov3' in model_name:
def extract_dinov3_name(path, n_parts=2):
filename = os.path.basename(path)
parts = filename.split("_")
return "_".join(parts[:n_parts])
self.model = torch.hub.load('src/dinov3', extract_dinov3_name(model_name), source='local', weights=model_name)
elif 'mae' in model_name or 'sam' in model_name or 'clip' in model_name or 'dino' in model_name:
self.model = timm.create_model(
model_name,
pretrained=True,
num_classes=0, # remove classifier nn.Linear
img_size=resize_dim
)
if 'sam' in model_name:
self.model.blocks[-1].register_forward_hook(get_vit_out)
else:
raise Exception("Unknown ViT model")
# self.model.eval()
mean = (0.485, 0.456, 0.406) if not 'clip' in model_name else (0.4815, 0.4578, 0.4082)
std = (0.229, 0.224, 0.225) if not 'clip' in model_name else (0.2686, 0.2613, 0.2758)
self.image_transforms = T.Compose([
T.Resize((resize_dim, resize_dim)),
lambda x: T.ToTensor()(x) if not isinstance(x, torch.Tensor) else x / 255.0, # ensure tensor
T.Normalize(mean, std),
])
self.model
self.model.requires_grad_(False)
self.clip_model_name = clip_model_name
if 'bert' in self.clip_model_name:
self.clip_model = BertModel.from_pretrained(self.clip_model_name, output_hidden_states = False)
# load the corresponding wordtokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.clip_model_name)
else:
self.clip_model, _ = clip.load(clip_model_name, device='meta')
self.clip_model.eval()
self.clip_model.requires_grad_(False)
if unfreeze_last_text_layer:
for param in self.clip_model.transformer.resblocks[-1].parameters():
param.requires_grad = True
for param in self.clip_model.ln_final.parameters():
param.requires_grad = True
self.clip_model.text_projection.requires_grad = True
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
# with open(os.path.join('configs', f"{proj_class}.yaml"), 'r') as config_file:
# config = yaml.safe_load(config_file)['model']
if 'vitb_mlp_infonce' in proj_class:
config = {
'act': 'tanh', # None, tanh, relu or sigmoid
'hidden_layer': True,
'dino_embed_dim': 768
}
elif 'vitl_mlp_infonce' in proj_class:
config = {
'act': 'tanh', # None, tanh, relu or sigmoid
'hidden_layer': True,
'dino_embed_dim': 1024
}
self.proj = ProjectionLayer.from_config(config)
# if pre_trained:
# self.proj.load_state_dict(torch.load(os.path.join("weights", f"{proj_name}.pth"), 'cpu'))
self.proj
self.masker = DINOTextMasker(similarity_type="cosine")
self.masker = self.masker.eval()
self.pamr = None
self.avg_self_attn_token = avg_self_attn_token
self.disentangled_self_attn_token = disentangled_self_attn_token
if self.avg_self_attn_token or self.disentangled_self_attn_token or is_eval:
self.model.blocks[-1].attn.qkv.register_forward_hook(self.get_self_attention)
self.num_global_tokens = 5 if 'reg' in model_name or 'dinov3' in model_name else 1
if 'sam' in self.model_name:
self.num_global_tokens = 0
self.num_attn_heads = self.model.num_heads
self.scale = 0.125
self.use_avg_text_token = use_avg_text_token
if self.use_avg_text_token:
self.feats = {}
# in this case we register a forward hook with the aim of getting all the tokens and not only the cls
self.clip_model.ln_final.register_forward_hook(self.get_all_out_tokens)
self.keep_cls = keep_cls
self.keep_end_seq = keep_end_seq
self.with_bg_clean = with_bg_clean
def process_self_attention(self, output, batch_size, num_tokens, num_attn_heads, embed_dim, scale, num_global_tokens, ret_self_attn_maps=False):
qkv = output.reshape(batch_size, num_tokens, 3, num_attn_heads, embed_dim // num_attn_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0] * scale, qkv[1], qkv[2]
attn = q @ k.transpose(-2, -1)
self_attn_maps = attn[:, : , 0, num_global_tokens:]
self_attn = self_attn_maps.mean(dim=1)
self_attn = self_attn.softmax(dim=-1)
if ret_self_attn_maps:
return self_attn, self_attn_maps
else:
return self_attn
def encode_text(self, tokenized_texts):
x = self.clip_model.encode_text(tokenized_texts)
return x
def encode_image(self, images):
batch_size, _, _, _ = images.shape
self_attn_maps = None
x = self.model(images, is_training=(self.avg_self_attn_token or self.disentangled_self_attn_token))
batch_size, num_tokens, embed_dim = x['x_norm_patchtokens'].shape
num_tokens = num_tokens + self.num_global_tokens
if self.avg_self_attn_token or self.disentangled_self_attn_token:
self_attn, self_attn_maps = self.process_self_attention(self.feats['self_attn'], batch_size, num_tokens, self.num_attn_heads, embed_dim, self.scale, self.num_global_tokens, ret_self_attn_maps=True)
if self.avg_self_attn_token:
x = (self_attn.unsqueeze(-1) * x['x_norm_patchtokens']).mean(dim=1)
elif self.disentangled_self_attn_token:
self_attn_maps = self_attn_maps.softmax(dim=-1)
x = (x['x_norm_patchtokens'].unsqueeze(1) * self_attn_maps.unsqueeze(-1)).mean(dim=2)
return x, self_attn_maps
def forward(self, image, text, return_logit_scale=False):
with torch.no_grad():
txt_embed = self.encode_text(text)
img_embed, self_attn_maps = self.encode_image(image)
if type(self.proj) == CLIPLastLayer:
img_embed, txt_embed = self.proj(img_embed, txt_embed, ret_embeds=True, self_attn_maps=self_attn_maps, text_argmax=text.argmax(dim=-1))
else:
img_embed, txt_embed = self.proj(img_embed, txt_embed, ret_embeds=True, self_attn_maps=self_attn_maps)
if return_logit_scale:
return txt_embed, img_embed, self.logit_scale
return txt_embed, img_embed
def compute_loss(self, image, text, cosine=True, ret_similarity_matrix=True):
ret = {}
if cosine:
img_embed = F.normalize(img_embed, p=2, dim=1)
txt_embed = F.normalize(txt_embed, p=2, dim=1)
sim = img_embed @ txt_embed.transpose(1, 0)
if not ret_similarity_matrix:
sim = sim[torch.eye(len(sim)) > 0.5] # only diagonal elements
ret['contrastive_loss'] = self.contrastive_loss.compute_contrastive_loss(sim)
return ret
@torch.no_grad()
def build_dataset_class_tokens(self, template_set, classnames):
tokens = []
templates = get_template(template_set)
for classname in classnames:
if 'bert' not in self.clip_model_name:
tokens.append(
clip.tokenize([template.format(classname) for template in templates])
)
else:
tokens.append(self.tokenizer([template.format(classname) for template in templates], return_tensors='pt', padding='max_length')['input_ids'])
# [N, T, L], N: number of instance, T: number of captions (including ensembled), L: sequence length
tokens = torch.stack(tokens)
return tokens
@torch.no_grad()
def build_text_embedding(self, text):
"""
Args:
text (torch.Tensor): [NUM_CLASSES, NUM_TEMPLATES, CONTEXT_LENGTH] text tokens
Returns:
text_embs
"""
text = text.to(next(self.parameters()).device)
num_classes, num_templates = text.shape[:2]
text_argmax = text.argmax(dim=-1)
text_argmax = rearrange(text_argmax, 'n t -> (n t)', n=num_classes, t=num_templates)
text = rearrange(text, 'n t l -> (n t) l', n=num_classes, t=num_templates)
# chunked inference for memory limitation
chunk_size = 32
N = text.size(0)
if type(self.proj) == CLIPLastLayer:
text_embs = torch.cat([
self.proj.project_clip_txt(self.encode_text(text[i:i + chunk_size]).permute(1, 0, 2), text_argmax=text_argmax[i:i + chunk_size])
for i in range(0, N, chunk_size)
])
else:
if not self.use_avg_text_token:
# performing classification using CLS textual token
if 'bert' not in self.clip_model_name:
text_embs = torch.cat([
self.clip_model.encode_text(text[i:i + chunk_size])
for i in range(0, N, chunk_size)
])
else:
# encoding with BERT
text_embs = []
for i in range(0, N, chunk_size):
outputs = self.clip_model(text[i:i + chunk_size])
text_embs.append(outputs['pooler_output'])
text_embs = torch.cat(text_embs)
else:
# using text token average
text_embs = []
for i in range(0, N, chunk_size):
self.clip_model.encode_text(text[i:i + chunk_size])
text_embs.append(average_text_tokens(self.feats['clip_txt_out_tokens'] @ self.clip_model.text_projection, text[i:i + chunk_size] > 0, self.keep_cls, self.keep_end_seq))
text_embs = torch.cat(text_embs)
# [N, T, C]
text_embs = rearrange(text_embs, '(n t) c -> n t c', n=num_classes, t=num_templates)
# [N, C]
text_embs = text_embs.mean(dim=1).float()
if type(self.proj) == ProjectionLayer or type(self.proj) == DoubleMLP:
text_embs = self.proj.project_clip_txt(text_embs)
text_embs = normalize(text_embs, dim=-1)
return text_embs
def apply_pamr(self, image, mask):
image = F.interpolate(image, mask.shape[-2:], mode="bilinear", align_corners=True)
if self.pamr is None:
pamr_iter = 10
pamr_kernel = [1, 2, 4, 8, 12, 24]
self.pamr = PAMR(pamr_iter, pamr_kernel)
self.pamr.eval()
self.pamr.to(next(self.parameters()).device)
mask = self.pamr(image, mask)
return mask
def compute_padsize(self, H: int, W: int, patch_size: int):
l, r, t, b = 0, 0, 0, 0
if W % patch_size:
lr = patch_size - (W % patch_size)
l = lr // 2
r = lr - l
if H % patch_size:
tb = patch_size - (H % patch_size)
t = tb // 2
b = tb - t
return l, r, t, b
@torch.no_grad()
def generate_masks(
self, image, img_metas, text_emb, classnames, text_is_token=False, apply_pamr=False, background_func="weighted_average_sigmoid", lambda_bg=0.2,
# kp_w=0.3,
):
"""Generate masks for each text embeddings
Args:
image [B, 3, H, W]
Returns:
softmask [B, N, H, W]: softmasks for each text embeddings
"""
H, W = image.shape[2:] # original image shape
# padded image size
pH, pW = image.shape[2:]
num_classes = text_emb.shape[0]
batch_size = image.shape[0]
image = image[:, [2, 1, 0], :, :] # BGR to RGB
ori_image = image.clone()
img_preprocessed = self.image_transforms(image).to(next(self.parameters()).device)
if 'dinov2' in self.model_name or 'dinov3' in self.model_name:
image_feat = self.model.forward_features(img_preprocessed)['x_norm_patchtokens']
elif 'mae' in self.model_name or 'clip' in self.model_name or 'dino' in self.model_name:
image_feat = self.model.forward_features(img_preprocessed)[:, 1:, :]
elif 'sam' in self.model_name:
self.model.forward_features(img_preprocessed)
image_feat = feats['vit_out'].reshape(feats['vit_out'].shape[0], feats['vit_out'].shape[1]**2, feats['vit_out'].shape[-1]) # BS x N_PATCHES x EMBED_DIM
batch_size, num_tokens, embed_dim = image_feat.shape
if type(self.proj) == VisualProjectionLayer:
image_feat = self.proj.project_dino(image_feat.float())
if type(self.proj) == DoubleMLP:
image_feat = self.proj.project_visual(image_feat.float())
b, np, c = image_feat.shape
np_h = np_w = int(sqrt(np))
image_feat = image_feat.reshape(b, np_h, np_w, c).permute(0, 3, 1, 2)
self_attn, self_attn_maps = self.process_self_attention(self.feats['self_attn'], batch_size, num_tokens + self.num_global_tokens, self.num_attn_heads, embed_dim, self.scale, self.num_global_tokens, ret_self_attn_maps=True)
mask, simmap = self.masker.forward_seg(image_feat, text_emb, hard=False) # [B, N, H', W']
if self.with_bg_clean:
mask = self.similarity_assignment_weighted(mask, image_feat, self_attn_maps, text_emb, lambda_bg)
# resize
mask = F.interpolate(mask, (pH, pW), mode='bilinear', align_corners=True) # [B, N, H, W]
if apply_pamr:
for c in range(0, mask.shape[1], 30):
mask[:, c:c + 30] = self.apply_pamr(ori_image, mask[:, c:c + 30])
assert mask.shape[2] == H and mask.shape[3] == W, f"shape mismatch: ({H}, {W}) / {mask.shape}"
return mask, simmap
def similarity_assignment_weighted(self, mask, image_feat, self_attn_maps, text_emb, lambda_bg=0.2):
bs, c, h, w = image_feat.shape
bs, num_classes, h, w = mask.shape
bs, num_heads, hw = self_attn_maps.shape
image_feat = image_feat.reshape(bs, c, hw)
num_classes, c = text_emb.shape
avg_head_embed = (self_attn_maps.unsqueeze(2) * image_feat.unsqueeze(1)).mean(dim=-1)
avg_head_embed = avg_head_embed / avg_head_embed.norm(dim=-1, keepdim=True)
avg_head_embed = avg_head_embed.permute(0, 2, 1) # [B, C, M]
head_text_sim = text_emb.unsqueeze(0) @ avg_head_embed # [B, M, N]
head_text_sim = (head_text_sim).softmax(dim=-1)
head_text_sim_sum = head_text_sim.sum(dim=-1)
self_attn_maps_repeat = self_attn_maps.unsqueeze(1).repeat(1, num_classes, 1, 1)
head_text_sim_repeat = head_text_sim.unsqueeze(-1).repeat(1, 1, 1, hw)
avg_self_attn_per_class = (self_attn_maps_repeat * head_text_sim_repeat).sum(dim=2) / head_text_sim_sum.unsqueeze(-1).repeat(1, 1, hw)
avg_self_attn_per_class = avg_self_attn_per_class.softmax(dim=-1)
min_self_attn = avg_self_attn_per_class.min().item()
max_self_attn = avg_self_attn_per_class.max().item()
max_self_attn = max(max_self_attn, max_self_attn - min_self_attn)
avg_self_attn_per_class = avg_self_attn_per_class - min_self_attn
avg_self_attn_per_class = avg_self_attn_per_class / max_self_attn
avg_self_attn_per_class = avg_self_attn_per_class * (mask.max() - mask.min()) + mask.min()
mask = mask.reshape(num_classes, hw) # [N, P]
mask_output = (mask + lambda_bg * avg_self_attn_per_class).reshape(bs, num_classes, h, w) / (1 + lambda_bg)
return mask_output